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Abstract. The derivation of the Hardy-Ramanujan-Rademacher formula for
the number of partitions of n is reviewed. Next, the steps for finding anal-

ogous formulas for certain restricted classes of partitions or overpartitions is
examined, bearing in mind how these calculations can be automated in a CAS.

Finally, a number of new formulas of this type which were conjectured with

the aid of Mathematica are presented along with results of a test for their
numerical accuracy.

1. Introduction

A partition of an integer n is a representation of n as a sum of positive inte-
gers, where the order of the summands (called parts) is considered irrelevant. For
example, there are seven partitions of the integer 5, namely 5, 4+1, 3+2, 3+1+1,
2+2+1, 2+1+1+1, and 1+1+1+1+1. Euler [6] was the first to systematically
study partitions. He showed that

(1.1)
∞∑
n=0

p(n)qn =
∞∏
m=1

1
1− qm

,

where p(n) denotes the number of partitions of n and we follow the convention that
p(0) = 1.

The series and infinite product in (1.1) converge absolutely when |q| < 1. Hardy
and Ramanujan were the first to study p(n) analytically and showed that [21, p.
79, Eq. (1.41)]

(1.2) p(n) ∼
exp(π

√
2/3)

4n
√

3
as n→∞.

Noting that the value of p(200) estimated by (1.2) was surprisingly close to the
true value of p(200) as computed by P.A. MacMahon, Hardy and Ramanujan were
encouraged to push their analysis of p(n) further.

Ultimately, they produced the formula [21, p. 85, Eq. (1.75)]
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(1.3) p(n) =
1

2π
√

2

α
√
n∑

k=1

√
k
∑

05h<k

(h,k)=1

ω(h, k)e−2πihn/k d

dn

exp
(
π
k

√
2
3 (n− 1

24 )
)

√
n− 1

24


+O(n−1/4),

with α an arbitrary constant and ω(h, k) a certain complex 24kth root of unity1

that arises frequently in the theory of modular forms and is defined below in (2.3).
Also, here and throughout (h, k) denotes the gcd of h and k.

While (1.3) is an asymptotic formula, it is incredibly accurate. For the case
n = 200, summing k from 1 to 8 results in a value only 0.004 higher than the true
value of 3 972 999 029 338.

Later, it was shown by D. H. Lehmer [26] that if the sum on k in (1.3) is
extended to ∞, the resulting series diverges.

In [30], Rademacher made a slight change in Hardy and Ramanujan’s analysis
which led him to finding a convergent series representation for p(n), very similar
in form to that of (1.3). This result is presented below as Theorem 2.1. In a later
paper, Rademacher altered the path of integration and as a result was able to give
a simpler proof for the correctness of his series [31]. This latter technique is also
described in books by Rademacher [32, Ch. 14] and Apostol [3, Ch. 5], while the
former may be found in the text of Andrews [1, Ch. 5].

The technique of deriving the formula for p(n) via integration of a certain func-
tion (see (2.8) below) which has singularities at every point of the unit circle in the
complex plane has come to be known as the “circle method.” The circle method
has proven to be applicable to many problems and as such is one of the most
important and useful tools in analytic number theory. There are far too many
papers which have used the circle method to even begin to mention them here,
but a subset of the literature which employs the circle method to find formulas
for certain restricted classes of partitions includes Grosswald [9, 10], Haberze-
tle [11], Hagis [12, 13, 14, 15, 16, 17, 18, 19, 20], Hua [22], Iseki [23, 24, 25],
Lehner [27], Livingood [28], Niven [29], and Subramanyasastri [37]. Recently,
Bringmann and Ono [4] have given exact formulas for the coefficients of all har-
monic Maas forms of weight 5 1

2 . Thus, all of the exact formulas for restricted
partition and overpartition functions presented here could be derived from the gen-
eral theorem in [4].

A main theme of this paper is that while the application of the circle method
to find p(n) or a given restricted partition formula may be complicated, it is essen-
tially a calculation. As such, many of the steps involved are ripe for automation.
Furthermore, a good number of the steps involve showing that a given integral ap-
proaches zero. As long as we can reliably predict when this will be the case, we can
produce reasonable conjectures for formulas without worrying about the estimates
that are required when a rigorous proof is desired.

We shall outline a derivation of p(n), and then consider how the circle method
applies to restricted partition and overpartition formulas, bearing in mind how to
automate these calculations.

Finally, we shall present some new restricted formulas conjectured with the aid
of Mathematica.

1Apostol [2] showed that it is also a 12kth root of unity.



TOWARDS AN AUTOMATION OF THE CIRCLE METHOD 3

2. An Overview of the Derivation of the
Hardy-Ramanujan-Rademacher Formula for p(n)

2.1. Preliminaries.
2.1.1. The Dedekind η-function. Let H := {τ ∈ C | =τ > 0}, the upper half of

the complex plane.
The Dedekind eta function is defined by

(2.1) η(τ) := eπiτ/12
∞∏
m=1

(1− e2πimτ )

where τ ∈ H.
For a, b, c, d ∈ Z with ad − bc = 1, and c > 0, η(τ) satisfies the functional

equation

(2.2) η

(
aτ + b

cτ + d

)
= ω(−d, c) exp

(
πi

(
a+ d

12c

))√
−i(cτ + d) η(τ),

where
(2.3)

ω(h, k) =
{ (−k

h

)
exp

(
−πi

{
1
4 (2− hk − h) + 1

12 (k − 1
k )(2h−H + h2H)

})
, if 2 - h(−h

k

)
exp

(
−πi

{
1
4 (k − 1) + 1

12 (k − 1
k )(2h−H + h2H)

})
, if 2 - k

(ab ) is the Legendre-Jacobi symbol, and H is any solution of the congruence

hH ≡ −1 (mod k).

2.1.2. Farey fractions. The sequence FN of proper Farey fractions of order N
is the set of all h

k with (h, k) = 1 and 0 5 h
k < 1, arranged in increasing order.

Thus, we have

F1 =
{

0
1

}
, F2 =

{
0
1
,

1
2

}
, F3 =

{
0
1
,

1
3
,

1
2
,

2
3

}
, F4 =

{
0
1
,

1
4
,

1
3
,

1
2
,

2
3
,

3
4

}
,

etc.
For a given N , let hp, hs, kp, and ks be such that hp

kp
is the immediate prede-

cessor of h
k and hs

ks
is the immediate successor of h

k in FN . It will be convenient to
view each FN cyclically, i.e. to view 0

1 as the immediate successor of N−1
N .

2.1.3. Ford circles and the Rademacher path. Let h and k be integers with
(h, k) = 1 and 0 5 h < k. The Ford circle [7] C(h, k) is the circle in C of radius
1

2k2 centered at the point
h

k
+

1
2k2

i.

The upper arc γ(h, k) of the Ford circle C(h, k) is the arc of the circle∣∣∣∣τ − (hk +
1

2k2
i

)∣∣∣∣ =
1
2k

from the initial point

(2.4) αI(h, k) :=
h

k
− kp
k(k2 + k2

p)
+

1
k2 + k2

p

i

to the terminal point

(2.5) αT (h, k) :=
h

k
+

ks
k(k2 + k2

s)
+

1
k2 + k2

s

i,
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traversed clockwise.
Note that we have αI(0, 1) = αT (N − 1, N).
Every Ford circle is in the upper half plane. For h1

k1
, h2
k2
∈ FN , C(h1, k1) and

C(h2, k2) are either tangent or do not intersect.
The Rademacher path P (N) of order N is the path in the upper half of the

τ -plane from i to i+ 1 consisting of

(2.6)
⋃

h
k∈FN

γ(h, k)

traversed left to right and clockwise. In particular, we consider the left half of the
Ford circle C(0, 1) and the corresponding upper arc γ(0, 1) to be translated to the
right by 1 unit. This is legal given the periodicity of the function which is to be
integrated over P (N).

2.2. Euler and Cauchy get us off the ground. Recall Euler’s generating
function for p(n),

(2.7) f(q) :=
∞∑
n=0

p(n)qn =
∞∏
m=1

1
1− qm

.

Let us now fix n. The function f(q)/qn+1 has a pole of order n + 1 at q = 0,
and an essential singularity at every point of the unit circle |q| = 1. The Laurent
series of f(q)/qn+1 about q = 0 is therefore

∞∑
j=0

p(j)qj−n−1 =
∞∑

j=−n−1

p(j + n+ 1)qj ,

for 0 < |q| < 1, and so the residue of f(q)/qn+1 at q = 0 is p(n).
Thus, Cauchy’s residue theorem implies that

(2.8) p(n) =
1

2πi

∫
C

f(q)
qn+1

dq,

where C is any positively oriented, simple closed contour enclosing the origin and
inside the unit circle.

2.3. The choice of C. Since

f(q)
qn+1

=
1

qn+1

∞∏
k=1

1
1− qk

=
1

qn+1

∞∏
k=1

k−1∏
j=0

1
1− e2πij/kq

we see that although every point of along |q| = 1 is an essential singularity of
f(q)/qn+1, in some sense q = 1 is the “heaviest” singularity, q = −1 is “half as
heavy,” q = e2πi/3 and e4πi/3 are each “one third as heavy,” etc.

The integral (2.8) is evaluated by approximating the integrand for each h, k by
an elementary function which is very nearly equal to f(q)/qn+1 near the singularity
e2πih/k. The contour C is chosen in such a way that the error introduced by this
approximation is carefully kept under control.

We introduce the change of variable q = exp(2πiτ) so that the unit disk |q| 5 1
in the q-plane maps to the infinitely tall, unit wide strip in the τ plane where
0 5 <τ 5 1 and =τ = 0. The contour C is then taken to be the preimage of the
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Rademacher path P (N) (see (2.6)) under the map q 7→ exp(2πiτ). Better yet, let
us replace q with exp(2πiτ) in (2.8) to express the integration in the τ -plane:

p(n) =
∫
P (N)

f(e2πiτ )e−2πinτdτ

=
∑

h
k∈FN

∫
γ(h,k)

f(e2πiτ )e−2πinτdτ

=
N∑
k=1

∑
05h<k

(h,k)=1

∫
γ(h,k)

f(e2πiτ )e−2πinτdτ

2.4. Another change of variable. Next, we change variables again, taking

(2.9) τ =
iz + h

k

so that z = −ik
(
τ − h

k

)
, for each τ ∈ C(h, k). Thus C(h, k) (in the τ -plane) maps

to the clockwise-oriented circle K(−)
k (in the z-plane) centered at 1/2k with radius

1/2k.
So we now have

p(n) =
N∑
k=1

∑
05h<k

(h,k)=1

∫ zT (h,k)

zI(h,k)

f(e2πih/k−2πz/k)e−2πin(iz+h)/k i

k
dz(2.10)

=
N∑
k=1

∑
05h<k

(h,k)=1

i

k
e−2πinh/k

∫ zT (h,k)

zI(h,k)

e2nπz/kf(e2πih/k−2πz/k) dz,(2.11)

where zI(h, k) (resp. zT (h, k)) is the image of αI(h, k) (see (2.4)) (resp. αT (h, k)
[see (2.5)]) under the transformation (2.9).

So the transformation (2.9) maps the upper arc γ(h, k) of C(h, k) in the τ -plane
to the arc on K

(−)
k which initiates at

(2.12) zI(h, k) =
k

k2 + k2
p

+
kp

k2 + k2
p

i

and terminates at

(2.13) zT (h, k) =
k

k2 + k2
s

− ks
k2 + k2

s

i.

2.5. Exploiting a modular transformation. It is incredibly fortunate that

f(q) = f(e2πiτ ) =
eπiτ/12

η(τ)
,

so that we may take advantage of the modular functional equation (2.2) satisfied
by η(τ) in our effort to evaluate (2.11). Equation (2.2) rewritten in terms of f(q)
is

(2.14) f(e2πi(iz+h)/k) = ω(h, k)eπ(z−1−z)/12k√zf(e2πi(iz
−1+H)/k),

where (h, k) = 1 and H is any solution to the congruence hH ≡ −1 (mod k), and√
z indicates the principle branch.
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Note that when |z| is close to 0, the left hand side of (2.14) is close to f(e2πih/k),
i.e. for |z| small, (2.14) gives a good approximation for f evaluated at the “heavy”
singularity e2πih/k. Next, observe that the final factor on the right hand side
of (2.14),

f(e2πi(iz
−1+H)/k) = f

(
exp

(
2πiH
k
− 2π
zk

))
,

is close to f(0) = 1 when |z| is small, so that

f(e2πi(iz
−1+H)/k)− 1

is close to 0 when |z| is small.
Applying this information to (2.11), we find that

p(n) =
N∑
k=1

∑
05h<k

(h,k)=1

i

k
e−2πinh/kω(h, k)

×
∫ zT (h,k)

zI(h,k)

e2nπz/keπ(z−1−z)/12k√zf(e2πi(iz
−1+H)/k) dz

=
N∑
k=1

i

k

∑
05h<k

(h,k)=1

e−2πinh/kω(h, k)

×
∫ zT (h,k)

zI(h,k)

eπ(24nz+z−1−z)/12k√z
{

1 +
[
f(e2πi(iz

−1+H)/k)− 1
]}

dz(2.15)

=
N∑
k=1

i

k

∑
05h<k

(h,k)=1

e−2πinh/kω(h, k)
(
Ih,k + I∗h,k

)
,

where

(2.16) Ih,k :=
∫ zT (h,k)

zI(h,k)

eπ(24nz+z−1−z)/12k√z dz

and

(2.17) I∗h,k :=
∫ zT (h,k)

zI(h,k)

eπ(24nz+z−1−z)/12k√z
[
f(e2πi(iz

−1+H)/k)− 1
]
dz.

2.6. Estimating I∗h,k. The next goal is to show that I∗h,k is small when N is
large. Note that we can change the path of integration of (2.17) from an arc of the
circle that is the image of the Ford circle under the transformation (2.9) connecting
zI(h, k) and zT (h, k) to the line segment connecting zI(h, k) and zT (h, k) without
altering the value of the integral. On the segment connecting zI(h, k) and zT (h, k),
we have

(2.18) |z| 5 max {|zI(h, k)|, |zT (h, k)|} = max

{√
1

k2 + k2
p

,

√
1

k2 + k2
s

}
5

√
2
N
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Obviously, the length of the segment connecting zI(h, k) and zT (h, k) can be
easily calculated for any particular h and k. However, we wish to have an upper
bound for the length that holds for a given N .

The length of the segment is 5 |zI(h, k)|+ |zT (h, k)| 5 2
√

2
N .

Bearing in mind that on the segment, <z < 1
k and <

(
1
z

)
= k, it can be shown

that the integrand in (2.17) is less than c|z|1/2, where

c = e2nπ/k
2
∞∑
m=1

p(24m− 1)t24m−1,

by mimicking the argument in [3, p. 107].
Since z is on the segment connecting zI(h, k) to zT (h, k), |z| is bounded above

by
√

2/N , so the integrand is bounded above by c
√√

2/N = c21/4N−1/2. Thus

|I∗h,k| <
c21/4

N1/2

2
√

2
N

= CN−3/2,

where C = 27/4c.
Finally, it can be shown (see, e.g., [3, p. 108]) that |I∗h,k| = O(N−1/2).

2.7. Estimations associated with Ih,k. The work of the preceding section
allows us to rewrite (2.15) as

(2.19) p(n) =
N∑
k=1

i

k

∑
05h<k

(h,k)=1

e−2πinh/kω(h, k)Ih,k +O(N−1/2),

where, as before,

(2.20) Ih,k :=
∫ zT (h,k)

zI(h,k)

eπ(24nz+z−1−z)/12k√z dz.

We proceed by re-expressing Ih,k as

(2.21) Ih,k =
∫
K

(−)
k

−
∫ zI(h,k)

0

−
∫ 0

zT (h,k)

,

where the integrands of all three integrals are the same as that of the right hand
side of (2.20).

The length of the arc connecting 0 and zI(h, k) is less than

π

2
|zI(h, k)| < π

2

√
2
N
.

On the arc, |z| <
√

2/N .
We had previously seen that the absolute value of the integrand is < c|z|1/2, so∫ zI(h,k)

0

eπ(24nz+z−1−z)/12k√z dz < c

√√
2
N

π√
2N

= CN−3/2.

An analogous estimate applies to
∫ 0

zT (h,)
.
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2.8. The formula for p(n). We may now write
(2.22)

p(n) =
N∑
k=1

∑
05h<k

(h,k)=1

i

k
e−2πinh/k

∫
K

(−)
k

e2nπz/kω(h, k)eπ(z−1−z)/12k√z dz +O(N−1/2).

Let N →∞ to obtain
(2.23)

p(n) = i

∞∑
k=1

∑
05h<k

(h,k)=1

e−2πinh/k

k
ω(h, k)

∫
K

(−)
k

√
z exp

{
π

12zk
+

2πz
k

(
n− 1

24

)}
dz.

Next, apply the transformation z = 1/w so that dz = −1/w2 dw:
(2.24)

p(n) =
1
i

∞∑
k=1

1
k

∑
05h<k

(h,k)=1

e−2πinh/kωh,k

∫ 1+∞i

1−∞i
w−5/2 exp

{
πw

12k
+

2π
wk

(
n− 1

24

)}
dw.

The integral in (2.24) can be evaluated in terms of Bessel functions. To make this
evaluation easier to see, we set w = 12k

π t, so that dw = 12k
π dt, to obtain

(2.25) p(n) = 2π
( π

12

)3/2 ∞∑
k=1

∑
05h<k

(h,k)=1

k−5/2 e−2πinh/kω(h, k)

× 1
2πi

∫ π/12k+∞i

π/12k−∞i
t−5/2 exp

{
t+

π2

6k2t

(
n− 1

24

)}
dt.

Now recall the Bessel function of the first kind of purely imaginary argument
is given by [38, p. 181, Eq. (1)]

Iν(z) =
(z/2)ν

2πi

∫ (0+)

−∞
t−ν−1 exp

(
t+

z2

4t

)
dt.

Taking into account the remark preceding Eq. (8) on p. 177 of [38], we may, since
π/12k > 0, alter the path of integration to obtain

(2.26) Iν(z) =
(z/2)ν

2πi

∫ π/12k+i∞

π/12k−i∞
t−ν−1 exp

(
t+

z2

4t

)
dt.

Setting ν = 3/2 and z = π
k

√
2
3 (n− 1

24 ) in (2.26) and applying the result to (2.25),
we find
(2.27)

p(n) =
2π

(24)3/2

(
n− 1

24

)−3/4 ∞∑
k=1

1
k

∑
05h<k

(h,k)=1

e−2πinh/kωh,kI3/2

(
π

k

√
2
3

(
n− 1

24

))

Bessel functions of half-odd order can be written in terms of elementary functions.
In particular,

I3/2(z) =

√
2z
π

d

dz

(
sinh z
z

)
,
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so the final form of the formula for p(n) is

Theorem 2.1 (Rademacher).

p(n) =
1

π
√

2

∞∑
k=1

√
k
∑

05h<k

(h,k)=1

e−2πinh/kω(h, k)
d

dn

 sinh
(
π
k

√
2
3

(
n− 1

24

))√
n− 1

24

 .

3. Restricted Partition Functions

3.1. Partition Identities. Euler [6] observed that the algebraic identity

(3.1)
∞∏
j=1

(1 + qj) =
∞∏
j=1

1
1− q2j−1

implies the following theorem about integer partitions:

Theorem 3.1 (Euler). The number of partitions of n into distinct parts equals
the number of partitions of n into odd parts.

While such a result tells us that there are the same number of partitions of n
into distinct parts as there are partitions of n using only odd parts, we do not know
how many such partitions of n there are. The circle method has been applied by
P. Hagis [13] and L. K. Hua [22] to address this question.

Theorem 3.2 (Hagis). Let δ(n) denote the number of partitions of n into
distinct parts. Then

(3.2) δ(n) =
π√

24n+ 1

∑
k=1

2-k

1
k

∑
05h<k

(h,k)=1

e−2πnh/k ω(h, k)
ω(2h, k)

I1

(
π
√

24n+ 1
6
√

2k

)
.

J.W.L. Glaisher [8] generalized Euler’s result to

Theorem 3.3 (Glaisher). The number of partitions of n where no part appears
more than j−1 times equals the number of “j-regular partitions of n”, i.e. partitions
of n where no part is a multiple of j.

Clearly, Euler’s theorem is the j = 2 case of Glaisher’s theorem. Glaisher’s
theorem follows immediately from the identity

(3.3)
∞∏
k=1

(1 + qk + q2k + · · ·+ q(j−1)k) =
∏
k=1

k 6≡0(mod j)

1
1− qk

.

Theorem 3.4 (Hagis [20]). Let δj(n) denote the number of j-regular partitions
of n. Then

(3.4) δj(n) =
2π

j
√

24n+ j − 1

∑
0<d<

√
j

d|j

√
d(j − d2)

∑
k=1

(k,j)=d

1
k

×
∑

05h<k

(h,k)=1

e−2πnh/k ω(h, k)
ω( jhd ,

k
d )
I1

(
π

6k

√
(24n+ j − 1)(j − d2)

j

)
.
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Another well known partition identity of this type is

Theorem 3.5 (I. Schur [34]). The number of partitions of n into distinct parts
which differ by at least three and where no consecutive multiples of three appear
equals the number of partitions of n into parts congruent to ±1 (mod 6).

Theorem 3.6 (I. Niven [29]). Let S(n) denote the number of partitions of n
into parts congruent to ±1 (mod 6). Then

(3.5) S(n) =
π√

36n− 3

∑
d|6

√
(d− 2)(d− 3)

∑
k=1

(k,6)=d

1
k

×
∑

05h<k

(h,k)=1

e−2πnh/k ω(h, k)ω( 6h
d ,

k
d )

ω( 2h
(k,2) ,

k
(k,2) )ω( 3h

(k,3) ,
k

(k,3) )
I1

(
π
√
d (12n− 1)
3
√

6k

)
.

Recently, the author found [36] For r = 0, 1, 2, 3, 4,

pr(n) =
2(r+1)/2

√
3

π

∑
k=1

√
k

(k,2max(r,1))=1

∑
05h<k

(h,k)=1

e−2πinh/k ω(h, k)ω(2rh, k)
ω(2h, k)

× d

dn


sinh

(
π
√

(24n−2r+1)(1+2r−1)

2r/2·6k

)
√

24n− 2r + 1


+
√

3
π

r∑
j=1+b r

2 c

2(2−j+r)/2
∑
k=1

√
k

(k,2r)=2j

∑
05h<k

(h,k)=1

e−2πinh/k ω(h, k)ω(2r−jh, 2−jk)
ω(h, k2 )

× d

dn


sinh

(
π
√

(24n−2r+1)(−1+22j−r)

6k

)
√

24n− 2r + 1

 ,

where
∞∑
n=0

pr(n)qn =
∞∏
m=1

1 + qm

1− q2rm
.

The r = 1 case corresponds to the Rademacher formula for p(n), Theorem 2.1. The
r = 0 case, due to Zuckerman [39, p. 321, Eq. (8.53)], simplifies to

(3.6) p0(n) = p̄(n) =
1

2π

∑
k=1

2-k

√
k
∑

05h<k

(h,k)=1

ω(h, k)2

ω(2h, k)
e−2πinh/k d

dn

 sinh
(
π
√
n

k

)
√
n


and the r = 2 case is

(3.7) p2(n) = pod(n) =
2

π
√

6

∑
d|4

√
(d− 2)(5d− 17)

∑
k=1

(k,4)=d

√
k
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×
∑

05h<k

(h,k)=1

ω(h, k) ω
(

4h
d ,

k
d

)
ω
(

2h
(k,2) ,

k
(k,2)

) e−2πinh/k d

dn

 sinh
(
π
√
d(8n−1)

4k

)
√

8n− 1

 ,

where pod(n) denotes the number of partitions of n where no odd part is repeated,
and p̄(n) denotes the number of overpartitions of n. An overpartition of n is a
finite weakly decreasing sequence of positive integers where the last occurrence of
a given part may or may not be overlined. Thus the eight overpartitions of 3 are
(3), (3̄), (2, 1), (2̄, 1), (2, 1̄), (2̄, 1̄), (1, 1, 1), (1, 1, 1̄). Overpartitions were introduced
by S. Corteel and J. Lovejoy in [5] and have been studied extensively by them and
others.

3.2. Distinct Parts. We have
∞∑
n=0

δ(n)qn =
∏
j=1

2-j

1
1− qj

=
f(q)
f(q2)

=: F (q),

where, as before f(q) :=
∑
n=0 p(n)qn =

∏
j=1(1− qj)−1.

Proceeding as in the case of p(n), we note

δ(n) =
1

2πi

∫
C

F (q)
qn+1

dq

=
1

2πi

∫
C

f(q)
f(q2)qn+1

dq

=
∫
P (N)

f(e2πiτ )
f(e4πiτ )

e−2πinτdτ

=
∑

h
k∈FN

∫
γ(h,k)

f(e2πiτ )
f(e4πiτ )

e−2πinτdτ

=
N∑
k=1

∑
05h<k

(h,k)=1

∫
γ(h,k)

f(e2πiτ )
f(e4πiτ )

e−2πinτdτ

=
N∑
k=1

∑
05h<k

(h,k)=1

∫ zT (h,k)

zI(h,k)

f(e2πih/k−2πz/k)
f(e4πih/k−4πz/k)

e−2πin(iz+h)/k i

k
dz

= i

N∑
k=1

k−1
∑

05h<k

(h,k)=1

e−2πinh/k

∫ zT (h,k)

zI(h,k)

e2nπz/k
f(e2πih/k−2πz/k)
f(e4πih/k−4πz/k)

dz,(3.8)

where, as before, q = e2πiτ , τ = (iz+h)/k, and P (N), γ(h, k), zI(h, k), and zT (h, k)
all have the same meaning as before.

At this point, we should like to transform

F (q) = f(q)/f(q2) = f(e2πih/k−2πz/k)/f(e4πih/k−4πz/k),

just as we had transformed f(q) = f(e2πih/k−2πz/k) via (2.14) in the analogous
analysis of p(n).
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It will be necessary to consider two cases. When k is even, k/2 is an inte-
ger, so we can obtain f(q2) from f(q) by replacing k by k/2 in f(e2πih/k−2πz/k).
On the other hand, when k is odd, we instead replace h by 2h and z by 2z in
f(e2πih/k−2πz/k). Thus,
(3.9)

F (e2πih/k−2πz/k) =


ω(h,k)
ω(h,k/2) exp

(
πz
12k −

π
12kz

)
F
(

exp
(

2πi(H1+iz
−1)

k

))
, if 2 | k,

ω(h,k)

ω(2h,k)
√

2
exp

(
πz
12k + π

24kz

)
/F
(

exp
(
πi(H2+iz

−1)
k

))
, if 2 - k,

where Hj is a solution to the congruence jhHj ≡ −1 (mod k).
Thus,

δ(n) = i

N∑
k=1
2|k

k−1
∑

05h<k

(h,k)=1

ω(h, k)
ω(h, k/2)

e−2πinh/k

∫ zT (h,k)

zI(h,k)

exp
[

2πz
k

(
n+

1
24

)
− π

12kz

]

× F
(

exp
(

2πi(H1 + iz−1)
k

))
dz

+
i√
2

N∑
k=1
2-k

k−1
∑

05h<k

(h,k)=1

ω(h, k)
ω(2h, k)

e−2πinh/k

∫ zT (h,k)

zI(h,k)

exp
[
2πz
k

(
n+ 1

24

)
+ π

24kz

]
F
(

exp
(
πi(H2+iz−1)

k

)) dz.

Next, we expand the appearances of F as series:

δ(n) = i

N∑
k=1
2|k

k−1
∑

05h<k

(h,k)=1

ω(h, k)
ω(h, k/2)

e−2πinh/k

∫ zT (h,k)

zI(h,k)

exp
[

2πz
k

(
n+

1
24

)
− π

12kz

]

×
∞∑
m=0

δ(m) exp
(

2πi(H1 + iz−1)m
k

)
dz

+
i√
2

N∑
k=1
2-k

k−1
∑

05h<k

(h,k)=1

ω(h, k)
ω(2h, k)

e−2πinh/k

∫ zT (h,k)

zI(h,k)

exp
[

2πz
k

(
n+

1
24

)
+

π

24kz

]

×
∞∑
m=0

δ∗(m)exp
(
πi(H2 + iz−1)m

k

)
dz

(3.10) = i

N∑
k=1
2|k

k−1
∞∑
m=0

δ(m)
∑

05h<k

(h,k)=1

ω(h, k)
ω(h, k/2)

exp
[

2πi
k

(H1m− hn)
]

×
∫ zT (h,k)

zI(h,k)

exp
[

2πz
k

(
n+

1
24

)
− π

kz

(
2m+

1
12

)]
dz

+
i√
2

N∑
k=1
2-k

k−1
∞∑
m=1

δ∗(m)
∑

05h<k

(h,k)=1

ω(h, k)
ω(2h, k)

exp
[
πi

k
(H2m− 2hn)

]
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×
∫ zT (h,k)

zI(h,k)

exp
[

2πz
k

(
n+

1
24

)
+

π

kz

(
1
24
−m

)]
dz

+
i√
2

N∑
k=1
2-k

k−1
∑

05h<k

(h,k)=1

ω(h, k)
ω(2h, k)

e−2πinh/k

∫ zT (h,k)

zI(h,k)

exp
[

2πz
k

(
n+

1
24

)
+

π

24kz

]
dz

where
1

F (q)
=
∞∑
n=0

δ∗(n)qn,

and we have used the fact that δ∗(0) = 1.
If the three sums in (3.10) are designated S1, S2, and S3 respectively, it can be

shown via Kloosterman sum estimation that S1, S2 → 0 as N → ∞ and only S3

contributes to the final formula for δ(n).

(3.11)

δ(n) =
−i

24
√

2

N∑
k=1
2-k

1
k

∑
05h<k

(h,k)=1

ω(h, k)
ω(2h, k)

e−2πinh/k

∫ zT (h,k)

zI(h,k)

exp
[

2πz
k

(
n+

1
24

)
+

π

24kz

]
dz.

Change variables t = π
12kz to obtain

δ(n) =
−iπ

24
√

2

∞∑
k=1
2-k

1
k2

×
∑

05h<k

(h,k)=1

e−2πihn/k ω(h, k)
ω(2h, k)

∫ π/12+∞i

π/12−∞i
t−2 exp

(
t+

π2(24n+ 1)
288k2t

)
dt

=
π√

24n+ 1

∞∑
k=1
2-k

1
k

∑
05h<k

(h,k)=1

e−2πihn/k ω(h, k)
ω(2h, k)

I1

(
π
√

24n+ 1
6k
√

2

)
.(3.12)

3.3. Summary of calculations. We now summarize the required steps to
find a Rademacher type formula for a(n) where

∞∑
n=0

a(n)qn =
J∏
j=1

f(qbj )
f(qcj )

.

• Find L := lcm(b1, b2, . . . , bJ , c1, c2, . . . , cJ).
• For each divisor d of L, there corresponds a case gcd(k, L) = d.

– To each case there corresponds to a summand of the form

Ωh,kCΨk(z)F (z, h, k)

which results from applying the modular transformation (2.2) to that
case. Ωh,k is a product of powers of the ω 24kth root of 1, C is
the constant that results, Ψk(z) is the exponential expression, and
F (z, h, k) is the product of powers of f .
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– Only those cases for which the coefficient of z−1 in log Ψ1(z) is pos-
itive will contribute to the final formula; others can be shown to
approach 0 via Kloosterman sum estimation.

– Map z 7→ π/(12kt).
– Evaluate integral in terms of the I1 Bessel function.

4. Slater’s list

In 1952, L. J. Slater published a list of 130 identities of Rogers-Ramanujan
type [35]. Many of the infinite products can be realized as products of powers of
η-functions, and have straightforward combinatorial interpretations as generating
functions of restricted classes of partitions or overpartitons.

Let us recall some of the identities in Slater’s list.
∞∑
n=0

(−1)nqn(2n+1)

(q2; q2)n(−q; q2)n+1
=
∞∏
m=1

(1 + q2m)(1− q2m−1)(S. 5)

∞∑
n=0

qn(n+1)/2(−q)n
(q)n

=
∞∏
m=1

1− q4m

1− qm
(S. 8)

∞∑
n=0

qn(2n+1)

(q)2n+1
=
∞∏
m=1

(1 + qm)(S. 9 = S. 84)

∞∑
n=0

qn
2
(−1)2n

(q2; q2)n(q2; q4)n
=
∞∏
m=1

1 + q2m−1

1− q2m−1
(S. 10)

∞∑
n=0

qn(n+1)(−q; q2)n
(q)2n+1

=
∞∏
m=1

1− q4m

1− qm

(S. 11 = S.51 = S.64)

∞∑
n=0

qn(−1)2n
(q2; q2)n

=
∞∏
m=1

(1− q6m−3)2(1− q6m)(1 + qm)
1− qm

(S. 24)

∞∑
n=0

qn
2
(−q)n

(q; q2)n+1(q)n
=
∞∏
m=1

(1− q6m−3)2(1− q6m)(1 + qm)
1− qm

(S. 26)

∞∑
n=0

q2n(n+1)(−q; q2)n
(q)2n+1(−q2; q2)n

=
∞∏
m=1

(1 + q6m−5)(1 + q6m−1)
(1− q6m−4)(1− q6m−2)

(S. 27)

∞∑
n=0

qn(2n−1)

(q)2n
=
∞∏
m=1

(1 + qm)(S. 52 = S. 85)

∞∑
n=0

qn(n+3)/2(−q)n+1(q3; q3)n
(q)n(q)2n+2

=
∞∏
m=1

(1− q18m)(1− q18m−3)(1− q18m−15)
(1− q2m−1)(1− qm)

(S. 76)

∞∑
n=0

qn(n+1)/2(−q)n(q3; q3)n
(q)n(q)2n+1

=
∞∏
m=1

(1− q6m)(1 + qm)
1− qm

(S. 77)

1 +
∞∑
n=1

qn(n+1)/2(−1)n+1(q3; q3)n−1

(q)n−1(q)2n
=
∞∏
m=1

(1− q18m)(1− q18m−9)2(1 + qm)
1− qm

(S. 78)
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∞∑
n=0

qn(n+1)(q3; q3)n
(q)2n+1(q)n

=
∞∏
m=1

1− q9m

1− qm
(S. 92)

∞∑
n=0

qn(n+1)(q3; q6)n(−q2; q2)n
(q2; q2)2n+1(q; q2)n

=
∞∏
m=1

(1− q6m)(1 + q12m−3)(1 + q12m−9)
(1− q4m−2)(1− q2m)

(S. 107)

∞∑
n=0

qn(n+2)(q3; q6)n(−q; q2)n+1

(q2; q2)2n+1(q; q2)n
=
∞∏
m=1

(1− q12m)(1− q4m−2)
1− qm

(S. 110 corrected)

∞∑
n=0

qn(n+2)(q6; q6)n(−q; q2)n+1

(q2; q2)n(q2; q2)2n+2
=
∞∏
m=1

(1− q36m)(1− q36m−27)(1− q36m−9)
(1− q2m−1)(1− q4m)

(S. 115)

Denote the coefficient of qn in the power series expansion of equation (S.j)
above by Sj(n). The following combinatorial interpretations are then immediate:

• S8(n) = S11(n) = δ4(n) = the number of 4-regular partitions of n; see
Theorem 3.4.

• S9(n) = S52(n) = δ(n) = the number of partitions into odd parts; see
Theorem 3.2.

• S10(n) = the number of overpartitions of n with only odd parts.
• S27(n) = the number of overpartitions of n where overlined parts are odd

nonmultiples of 3 and the nonoverlined parts are even nonmultiples of 6.
• S76(n) = the number of overpartitions of n where no nonoverlined part is

congruent to 0, 3, or 15 (mod 18).
• S77(n) = the number of overpartitions of n where no nonoverlined part is

a multiple of 6.
• S92(n) = δ9(n) = the number of 9-regular partitions of n; see Theorem 3.4.
• S107(n) = the number of overpartitions of n where overlined parts are

even or ±3 (mod 12) and nonoverlined parts are ±2 (mod 6).
• S110(n) = the number of partitions of n into parts not congruent to

0, 2, 6, 10 (mod 12).
• S115(n) = the number of partitions of n into parts not congruent to 0,±9

(mod 36) nor congruent to 2 (mod 4).

S5(n), S24(n), and S78(n) are not as easily interpreted in terms of partitions or
overpartitions, because of the presence of a repeated factor in the numerator.

The following Rademacher type formulas were conjectured with the aid of Math-
ematica, and are believed to be new:

(4.1) S5(n) =
2π√

24n+ 1

∑
k=1

k≡2(mod 4)

1
k

×
∑

05h<k

(h,k)=1

e−2πinh/k ω(h, k2 )2

ω(h, k)ω(2h, k2 )
I1

(
π
√

24n+ 1
3k
√

2

)
.
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(4.2) S10(n) =
π

4
√
n

∑
k=1

2-k

1
k

∑
05h<k

(h,k)=1

e−2πinh/k ω(h, k)2ω(4h, k)
ω(2h, k)3

I1

(
π
√
n

k
√

2

)
.

(4.3) S24(n) =
π

3
√

2n

∑
k=1

2,3-k

1
k

∑
05h<k

(h,k)=1

e−2πinh/k ω(h, k)2ω(6h, k)
ω(2h, k)ω(3h, k)2

I1

(
π
√

2n
k
√

3

)

(4.4) S27(n) =
π

9
√

4n+ 1

∑
d|4

(d− 2)(2d− 5)
∑
k=1

(k,12)=d

1
k

×
∑

05h<k

(h,k)=1

e−2πinh/k
ω(h, k)ω( 4h

d ,
k
d )ω( 6h√

d
, k√

d
)

ω( 12h
d , k)ω(3h, kd )ω( 2h√

d
, k√

d
)
I1

(
π
√
d(4n+ 1)
2k
√

3

)

(4.5) S76(n) =
π

9
√

2n+ 2

∑
k=1

(k,18)=1

1
k

×
∑

05h<k

(h,k)=1

e−2πinh/k ω(h, k)2ω(6h, k)ω(9h, k)
ω(2h, k)ω(3h, k)ω(18h, k)2

I1

(
2π
√

2n+ 2
3k

)

(4.6) S77(n) =
π
√

2
3
√

12n+ 3

∑
k=1

2,3-k

1
k

∑
05h<k

(h,k)=1

e−2πinh/k ω(h, k)2

ω(2h, k)ω(6h, k)
I1

(
π
√

8n+ 2
3k

)

(4.7) S78(n) =
π
√

2
9
√
n

∑
k=1

(k,18)=1

1
k

∑
05h<k

(h,k)=1

e−2πinh/k ω(h, k)2ω(18h, k)
ω(2h, k)ω(9h, k)2

I1

(
2π
√

2n
3k

)

(4.8) S107(n) =
2π

3
√

24n+ 3

2∑
j=1

√
4j − 3

∑
k=1

(k,12)=j

1
k

×
∑

05h<k

(h,k)=1

e−2πinh/k
ω( 2h

j ,
k
j )2ω(3h, k)ω( 12h

j ,
k
j )

ω( 4h
j ,

k
j )ω( 6h

j ,
k
j )3

I1

(
π
√

(3j − 1)(8n+ 1)
6k

)

(4.9) S110(n) =
2π

9
√

16n+ 6

∑
d|4

√
(d− 2)(7d− 13)

∑
k=1

(k,12)=d

1
k
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×
∑

05h<k

(h,k)=1

e−2πinh/k ω(h, k)ω( 4h
d ,

k
d )

ω( 2h√
d
, k√

d
)ω( 12h

d , kd )
I1

(
π
√

1 + d
√

8n+ 3
6k

)

(4.10) S115(n) =
π

27
√
n+ 1

∑
d|4

(d− 2)(2d− 5)
∑
k=1

(k,36)=d

1
k

×
∑

05h<k

(h,k)=1

e−2πinh/k
ω(h, k)ω( 4h

d ,
k
d )ω( 18h√

d
, k√

d
)

ω(9h, k)ω( 2h√
d
, k√

d
)ω( 36h

d , kd )
I1

(
2
√
dπ
√
n+ 1

3k

)

5. Numerical Test

Each of the formulas (4.2)–(4.10), along with Hagis’s formula (3.2) and Niven’s
formula (3.5), was tested summing k from 1 to 10, and the value provided by the
formula was compared with the actual value. In the chart below, the true value of
the given function at n = 100 is provided along with the magnitude of the largest
error in the formula (when truncated at k = 10) for 1 5 n 5 100.

Eq. no. function value at n = 100 max error
(3.2) δ(n) 444 793 0.211
(3.5) S(n) 20 901 0.318
(4.1) S5(n) 444 793 0.186
(4.2) S10(n) 29 025 326 0.210
(4.3) S24(n) 793 378 722 0.200
(4.4) S27(n) 369 566 0.188
(4.5) S76(n) 15 008 235 468 0.050
(4.6) S77(n) 23 399 621 246 0.133
(4.7) S78(n) 26 086 456 322 0.143
(4.8) S107(n) 4 690 080 0.166
(4.9) S110(n) 4 731 983 0.216
(4.10) S115(n) 4 105 275 0.162
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