[go: up one dir, main page]

login
Search: a131438 -id:a131438
     Sort: relevance | references | number | modified | created      Format: long | short | data
Inverse binomial transform of A131438 (assuming zero offset in both sequences)
+20
3
1, 7, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, 58, 62, 66, 70, 74, 78, 82, 86, 90, 94, 98, 102, 106, 110, 114, 118, 122, 126, 130, 134, 138, 142, 146, 150, 154, 158, 162, 166, 170, 174, 178, 182
OFFSET
1,2
COMMENTS
Conjecture: The sequence appears to be (1, 7, ...) followed by 4k + 14; k=0,1,2,...; thus: (1, 7, 14, 18, 22, 26, ...).
Inverse binomial transform of this sequence = (1, 6, 1, -4, 7, -10, 13, -16, 19, -22, ...).
FORMULA
a(n) = 2*a(n-1) - a(n-2) for n>4. G.f.: -x*(x+1)*(3*x^2-4*x-1) / (x-1)^2. [Colin Barker, Jan 06 2013]
EXAMPLE
(1, 3, 3, 1) dot (1, 7, 14, 18) = 82 = A131438(4).
CROSSREFS
KEYWORD
nonn
AUTHOR
Gary W. Adamson, Jul 11 2007
STATUS
approved
Triangle read by rows, (n-1) zeros followed by 2^n - 1.
+10
4
1, 0, 3, 0, 0, 7, 0, 0, 0, 15, 0, 0, 0, 0, 31, 0, 0, 0, 0, 0, 63, 0, 0, 0, 0, 0, 0, 127, 0, 0, 0, 0, 0, 0, 0, 255, 0, 0, 0, 0, 0, 0, 0, 0, 511, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1023, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 2047, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 4095, 0, 0
OFFSET
1,3
LINKS
FORMULA
2*A059268(n)-A059268(n+1). - Paul Curtz, Jul 03 2008
EXAMPLE
First few rows of the triangle are:
1;
0, 3;
0, 0, 7;
0, 0, 0, 15;
0, 0, 0, 0, 31;
...
MATHEMATICA
Flatten[Table[{PadRight[{}, n-1, 0], 2^n-1}, {n, 20}]] (* Harvey P. Dale, May 23 2012 *)
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Gary W. Adamson, Jul 11 2007
EXTENSIONS
More terms from Harvey P. Dale, May 23 2012
STATUS
approved
1, 3, 5, 7, 9, 13, 15, 17, 21, 29, 31, 33, 37, 45, 61, 63, 65, 69, 77, 93, 125, 127, 129, 133, 141, 157, 189, 253, 255, 257, 261, 269, 285, 317, 381, 509, 511, 513, 517, 525, 541, 573, 637, 765, 1021, 1023, 1025, 1029, 1037, 1053, 1085, 1149, 1277, 1533, 2045
OFFSET
1,2
COMMENTS
Left column = 2^n - 1; right border = A036563, 2^(n+1) - 3: (1, 5, 13, 29, 61, 125, ...). Row sums = A131438: (1, 8, 29, 82, 207, 492, 1129, ...).
FORMULA
(A000012 * A131436) + (A131436 * A000012) - A000012; as infinite lower triangular matrices.
EXAMPLE
First few rows of the triangle are:
1;
3, 5;
7, 9, 13;
15, 17, 21, 29;
31, 33, 37, 45, 61;
63, 65, 69, 77, 93, 125;
...
MAPLE
A000012 := proc(n, k)
1 ;
end proc:
A131436 := proc(n, k)
if k = n then
2^n-1 ;
else
0;
end if;
end proc:
A131437 := proc(n, k)
add( A000012(n, i)*A131436(i, k) + A131436(n, i)*A000012(i, k), i=k..n) -1 ;
end proc:
seq(seq(A131437(n, k), k=1..n), n=1..15) ; # R. J. Mathar, Sep 24 2011
CROSSREFS
KEYWORD
nonn,easy,tabl
AUTHOR
Gary W. Adamson, Jul 11 2007
EXTENSIONS
Corrected by R. J. Mathar, Sep 24 2011
STATUS
approved

Search completed in 0.008 seconds