[go: up one dir, main page]

login
A131437
4
1, 3, 5, 7, 9, 13, 15, 17, 21, 29, 31, 33, 37, 45, 61, 63, 65, 69, 77, 93, 125, 127, 129, 133, 141, 157, 189, 253, 255, 257, 261, 269, 285, 317, 381, 509, 511, 513, 517, 525, 541, 573, 637, 765, 1021, 1023, 1025, 1029, 1037, 1053, 1085, 1149, 1277, 1533, 2045
OFFSET
1,2
COMMENTS
Left column = 2^n - 1; right border = A036563, 2^(n+1) - 3: (1, 5, 13, 29, 61, 125, ...). Row sums = A131438: (1, 8, 29, 82, 207, 492, 1129, ...).
FORMULA
(A000012 * A131436) + (A131436 * A000012) - A000012; as infinite lower triangular matrices.
EXAMPLE
First few rows of the triangle are:
1;
3, 5;
7, 9, 13;
15, 17, 21, 29;
31, 33, 37, 45, 61;
63, 65, 69, 77, 93, 125;
...
MAPLE
A000012 := proc(n, k)
1 ;
end proc:
A131436 := proc(n, k)
if k = n then
2^n-1 ;
else
0;
end if;
end proc:
A131437 := proc(n, k)
add( A000012(n, i)*A131436(i, k) + A131436(n, i)*A000012(i, k), i=k..n) -1 ;
end proc:
seq(seq(A131437(n, k), k=1..n), n=1..15) ; # R. J. Mathar, Sep 24 2011
CROSSREFS
KEYWORD
nonn,easy,tabl
AUTHOR
Gary W. Adamson, Jul 11 2007
EXTENSIONS
Corrected by R. J. Mathar, Sep 24 2011
STATUS
approved