Displaying 1-10 of 24 results found.
Partial sums of the 'lower' Lucas Inverse A130241.
+20
11
1, 2, 4, 7, 10, 13, 17, 21, 25, 29, 34, 39, 44, 49, 54, 59, 64, 70, 76, 82, 88, 94, 100, 106, 112, 118, 124, 130, 137, 144, 151, 158, 165, 172, 179, 186, 193, 200, 207, 214, 221, 228, 235, 242, 249, 256, 264, 272, 280, 288, 296, 304, 312, 320, 328, 336, 344, 352
FORMULA
G.f.: g(x) = 1/(1-x)^2*Sum_{k>=1} x^Lucas(k).
MATHEMATICA
Table[1 + Sum[Floor[Log[GoldenRatio, k + 1/2]], {k, 1, n}], {n, 1, 50}] (* G. C. Greubel, Sep 13 2018 *)
PROG
(PARI) for(n=1, 50, print1(1 + sum(k=1, n, floor(log(k+1/2)/log((1+sqrt(5))/2))), ", ")) \\ G. C. Greubel, Sep 13 2018
(Magma) [1 + (&+[Floor(Log(k+1/2)/Log((1+Sqrt(5))/2)): k in [1..n]]): n in [1..50]]; // G. C. Greubel, Sep 13 2018
a(n) is the maximal k such that Fibonacci(k) <= n (the "lower" Fibonacci Inverse).
+10
40
0, 2, 3, 4, 4, 5, 5, 5, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10
COMMENTS
Inverse of the Fibonacci sequence ( A000045), nearly, since a(Fibonacci(n)) = n except for n = 1 (see A130234 for another version). a(n) + 1 is equal to the partial sum of the Fibonacci indicator sequence (see A104162).
FORMULA
a(n) = floor(log_phi((sqrt(5)*n + sqrt(5*n^2+4))/2)) where phi = (1+sqrt(5))/2 = A001622.
a(n) = floor(arcsinh(sqrt(5)*n/2) / log(phi)), with log(phi) = A002390.
G.f.: g(x) = 1/(1-x) * Sum_{k>=1} x^Fibonacci(k).
a(n) = floor(log_phi(sqrt(5)*n+1)), n >= 0, where phi is the golden ratio. - Hieronymus Fischer, Jul 02 2007
EXAMPLE
a(10) = 6, since Fibonacci(6) = 8 <= 10 but Fibonacci(7) = 13 > 10.
MATHEMATICA
fibLLog[0] := 0; fibLLog[1] := 2; fibLLog[n_Integer] := fibLLog[n] = If[n < Fibonacci[fibLLog[n - 1] + 1], fibLLog[n - 1], fibLLog[n - 1] + 1]; Table[fibLLog[n], {n, 0, 88}] (* Alonso del Arte, Sep 01 2013 *)
Minimal index k of a Fibonacci number such that Fibonacci(k) >= n (the 'upper' Fibonacci Inverse).
+10
23
0, 1, 3, 4, 5, 5, 6, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11
COMMENTS
Inverse of the Fibonacci sequence ( A000045), nearly, since a(Fibonacci(n)) = n except for n = 2 (see A130233 for another version). a(n+1) is equal to the partial sum of the Fibonacci indicator sequence (see A104162).
FORMULA
a(n) = ceiling(log_phi((sqrt(5)*n + sqrt(5*n^2-4))/2)) = ceiling(arccosh(sqrt(5)*n/2)/log(phi)) where phi = (1+sqrt(5))/2, the golden ratio, for n > 0.
G.f.: x/(1-x) * Sum_{k >= 0} x^Fibonacci(k).
a(n) = ceiling(log_phi(sqrt(5)*n - 1)) for n > 0, where phi is the golden ratio. - Hieronymus Fischer, Jul 02 2007
EXAMPLE
a(10) = 7, since Fibonacci(7) = 13 >= 10 but Fibonacci(6) = 8 < 10.
MAPLE
local i;
for i from 0 do
return i;
end if;
end do:
MATHEMATICA
a[n_] := For[i = 0, True, i++, If[Fibonacci[i] >= n, Return[i]]];
Partial sums of the Lucas Inverse A130247.
+10
20
1, 1, 3, 6, 9, 12, 16, 20, 24, 28, 33, 38, 43, 48, 53, 58, 63, 69, 75, 81, 87, 93, 99, 105, 111, 117, 123, 129, 136, 143, 150, 157, 164, 171, 178, 185, 192, 199, 206, 213, 220, 227, 234, 241, 248, 255, 263, 271, 279, 287, 295, 303, 311, 319, 327, 335, 343, 351
MATHEMATICA
Join[{1, 1}, Table[Sum[Floor[Log[GoldenRatio, k + 1/2]], {k, 1, n}], {n, 3, 50}]] (* G. C. Greubel, Dec 24 2017 *)
CROSSREFS
Other related sequences: A000032, A130241, A130242, A130243, A130244, A130245, A130246, A130251, A130252, A130257, A130261. Fibonacci inverse see A130233 - A130240, A104162.
Maximal index k of a Jacobsthal number such that A001045(k)<=n (the 'lower' Jacobsthal inverse).
+10
19
0, 2, 2, 3, 3, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8
COMMENTS
Inverse of the Jacobsthal sequence ( A001045), nearly, since a( A001045(n))=n except for n=1 (see A130250 for another version). a(n)+1 is equal to the partial sum of the Jacobsthal indicator sequence (see A105348).
FORMULA
a(n) = floor(log_2(3n+1)).
G.f.: 1/(1-x)*(Sum_{k>=1} x^ A001045(k)).
MATHEMATICA
Table[Floor[Log[2, 3*n + 1]], {n, 0, 50}] (* G. C. Greubel, Jan 08 2018 *)
PROG
(PARI) for(n=0, 30, print1(floor(log(3*n+1)/log(2)), ", ")) \\ G. C. Greubel, Jan 08 2018
(Magma) [Floor(Log(3*n+1)/Log(2)): n in [0..30]]; // G. C. Greubel, Jan 08 2018
(Python)
a(n) = 1 if n is a Lucas number, else a(n) = 0.
+10
18
0, 1, 1, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1
COMMENTS
a(n) is the number of nonnegative integer solutions to 25*x^4-10*n^2*x^2+n^4-16=0.
a(n)=1 if and only if there is an integer m such that x=n is a root of p(x)=x^4-10*m^2*x^2+25*m^4-16.
For n>=3: a(n)=1 iff floor(log_phi(n+1/2))=ceiling(log_phi(n-1/2)). (End)
FORMULA
G.f.: g(x) = Sum_{k>=0} x^ A000032(k).
a(n) = 1+floor(arcsinh(n/2)/log(phi))-ceiling(arccosh(n/2)/log(phi)) for n>=3, where phi=(1+sqrt(5))/2.
MATHEMATICA
{0}~Join~ReplacePart[ConstantArray[0, Last@ #], Map[# -> 1 &, #]] &@ Array[LucasL, 11, 0] (* Michael De Vlieger, Nov 22 2017 *)
With[{nn=130, lc=LucasL[Range[0, 20]]}, Table[If[MemberQ[lc, n], 1, 0], {n, 0, nn}]] (* Harvey P. Dale, Jul 03 2022 *)
PROG
(PARI) a(n)=my(f=factor(25*'x^4-10*n^2*'x^2+n^4-16)[, 1]); sum(i=1, #f, poldegree(f[i])==1 && polcoeff(f[i], 0)<=0) \\ Charles R Greathouse IV, Nov 06 2014
(PARI) A102460(n) = { my(u1=1, u2=3, old_u1); if(n<=2, sign(n), while(n>u2, old_u1=u1; u1=u2; u2=old_u1+u2); (u2==n)); }; \\ Antti Karttunen, Nov 22 2017
(Python)
from sympy.ntheory.primetest import is_square
def A102460(n): return int(is_square(m:=5*(n**2-4)) or is_square(m+40)) # Chai Wah Wu, Jun 13 2024
Number of Lucas numbers ( A000032) <= n.
+10
16
0, 1, 2, 3, 4, 4, 4, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10
COMMENTS
Partial sums of the Lucas indicator sequence A102460.
For n>=2, we have a( A000032(n)) = n + 1.
FORMULA
a(n) = 1 +floor(log_phi((n+sqrt(n^2+4))/2)) = 1 +floor(arcsinh(n/2)/log(phi)) for n>=2, where phi = (1+sqrt(5))/2.
G.f.: g(x) = 1/(1-x)*sum{k>=0, x^Lucas(k)}.
a(n) = 1 +floor(log_phi(n+1/2)) for n>=1, where phi is the golden ratio.
EXAMPLE
a(9)=5 because there are 5 Lucas numbers <=9 (2,1,3,4 and 7).
MATHEMATICA
Join[{0}, Table[1+Floor[Log[GoldenRatio, (2*n+1)/2]], {n, 1, 100}]] (* G. C. Greubel, Sep 09 2018 *)
PROG
(PARI)
A102460(n) = { my(u1=1, u2=3, old_u1); if(n<=2, sign(n), while(n>u2, old_u1=u1; u1=u2; u2=old_u1+u2); (u2==n)); };
\\ Or just as:
(Magma) [0] cat [1+Floor(Log((2*n+1)/2)/Log((1+Sqrt(5))/2)): n in [1..100]]; // G. C. Greubel, Sep 09 2018
(Python)
from itertools import count, islice
def A130245_gen(): # generator of terms
yield from (0, 1, 2)
a, b = 3, 4
for i in count(3):
yield from (i, )*(b-a)
a, b = b, a+b
Number of Jacobsthal numbers ( A001045) <=n.
+10
14
1, 3, 3, 4, 4, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9
COMMENTS
Partial sums of the Jacobsthal indicator sequence ( A105348).
For n<>1, we have a( A001045(n))=n+1.
FORMULA
a(n) = floor(log_2(3n+1)) + 1 = ceiling(log_2(3n+2)).
G.f.: 1/(1-x)*(Sum_{k>=0} x^ A001045(k)).
EXAMPLE
a(9)=5 because there are 5 Jacobsthal numbers <=9 (0,1,1,3 and 5).
MATHEMATICA
Table[1+Floor[Log[2, 3n+1]], {n, 0, 100}] (* Harvey P. Dale, Jul 03 2013 *)
PROG
(Magma) [Ceiling(Log(3*n+2)/Log(2)): n in [0..30]]; // G. C. Greubel, Jan 08 2018
Maximal index k of an odd Fibonacci number ( A001519) such that A001519(k) = Fibonacci(2k-1) <= n (the 'lower' odd Fibonacci Inverse).
+10
12
1, 2, 2, 2, 3, 3, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6
COMMENTS
Inverse of the odd Fibonacci sequence ( A001519), nearly, since a( A001519(n))=n except for n=0 (see A130256 for another version). a(n)+1 is the number of odd Fibonacci numbers ( A001519) <= n (for n >= 1).
FORMULA
a(n) = floor((1 + arcsinh(sqrt(5)*n/2)/log(phi))/2).
a(n) = floor((1 + arccosh(sqrt(5)*n/2)/log(phi))/2).
a(n) = floor((1 + log_phi(sqrt(5)*n))/2) for n >= 1, where phi = (1 + sqrt(5))/2.
G.f.: g(x) = 1/(1-x)*Sum_{k>=1} x^Fibonacci(2k-1).
a(n) = floor((1/2)*(1 + log_phi(sqrt(5)*n + 1))) for n >= 1.
MATHEMATICA
Table[Floor[(1 +ArcSinh[Sqrt[5]*n/2]/Log[GoldenRatio])/2], {n, 1, 100}] (* G. C. Greubel, Sep 09 2018 *)
PROG
(PARI) phi=(1+sqrt(5))/2; vector(100, n, floor((1 +asinh(sqrt(5)*n/2)/log(phi))/2)) \\ G. C. Greubel, Sep 09 2018
(Magma) phi:=(1+Sqrt(5))/2; [Floor((1 +Argsinh(Sqrt(5)*n/2)/Log(phi))/2): n in [1..100]]; // G. C. Greubel, Sep 09 2018
Partial sums of the 'lower' odd Fibonacci Inverse A130255.
+10
12
1, 3, 5, 7, 10, 13, 16, 19, 22, 25, 28, 31, 35, 39, 43, 47, 51, 55, 59, 63, 67, 71, 75, 79, 83, 87, 91, 95, 99, 103, 107, 111, 115, 120, 125, 130, 135, 140, 145, 150, 155, 160, 165, 170, 175, 180, 185, 190, 195, 200, 205, 210, 215, 220, 225, 230, 235, 240, 245, 250
FORMULA
G.f.: g(x)=1/(1-x)^2*sum(k>=1, x^Fib(2k-1)).
MATHEMATICA
Table[Sum[Floor[(1 + ArcSinh[Sqrt[5]*k/2]/Log[GoldenRatio])/2], {k, 1, n}], {n, 1, 100}] (* G. C. Greubel, Sep 09 2018 *)
PROG
(PARI) for(n=1, 100, print1(sum(k=1, n, floor((1+asinh(sqrt(5)*k/2)/log((1+sqrt(5))/2))/2)), ", ")) \\ G. C. Greubel, Sep 09 2018
(Magma) [(&+[Floor((1+Argsinh(Sqrt(5)*k/2)/Log((1+Sqrt(5))/2))/2): k in [1..n]]): n in [1..100]]; // G. C. Greubel, Sep 09 2018
Search completed in 0.015 seconds
|