[go: up one dir, main page]

login
A108852
Number of Fibonacci numbers <= n.
19
1, 3, 4, 5, 5, 6, 6, 6, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 9, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 10, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11, 11
OFFSET
0,2
COMMENTS
1 is counted twice as a Fibonacci number: F(1) = F(2) = 1. - Alois P. Heinz, Nov 04 2024
LINKS
Dorin Andrica, Ovidiu Bagdasar, and George Cătălin Tųrcąs, On some new results for the generalised Lucas sequences, An. Şt. Univ. Ovidius Constanţa (Romania, 2021) Vol. 29, No. 1, 17-36.
FORMULA
G.f.: (Sum_{n>=0} x^Fibonacci(n))/(1-x). - Vladeta Jovovic, Nov 27 2005
a(n) = 1+floor(log_phi((sqrt(5)*n+sqrt(5*n^2+4))/2)), n>=0, where phi is the golden ratio. Alternatively, a(n) = 1+floor(arcsinh(sqrt(5)*n/2)/log(phi)). Also a(n) = A072649(n)+2. - Hieronymus Fischer, May 02 2007
a(n) = 1+floor(log_phi(sqrt(5)*n+1)), n>=0, where phi is the golden ratio. - Hieronymus Fischer, Jul 02 2007
MAPLE
a:= proc(n) option remember; `if`(n<2, 2*n+1, a(n-1)+
(t-> `if`(issqr(t+4) or issqr(t-4), 1, 0))(5*n^2))
end:
seq(a(n), n=0..100); # Alois P. Heinz, Nov 04 2024
MATHEMATICA
fibPi[n_] := 1 + Floor[ Log[ GoldenRatio, 1 + n*Sqrt@ 5]]; Array[fibPi, 80, 0] (* Robert G. Wilson v, Aug 03 2014 *)
PROG
(Haskell) fibs :: [Integer]
fibs = 0 : 1 : zipWith (+) fibs (tail fibs)
fibs_to :: Integer -> Integer
fibs_to n = length $ takeWhile (<= n) fibs
(Python)
def A108852(n):
a, b, c = 0, 1, 0
while a <= n:
a, b = b, a+b
c += 1
return c # Chai Wah Wu, Nov 04 2024
CROSSREFS
Partial sums of A104162.
Sequence in context: A098200 A092405 A130234 * A179413 A119476 A358700
KEYWORD
nonn,changed
AUTHOR
Michael C. Vanier (mvanier(AT)cs.caltech.edu), Nov 27 2005
STATUS
approved