[go: up one dir, main page]

login
Search: a129421 -id:a129421
     Sort: relevance | references | number | modified | created      Format: long | short | data
Array read by antidiagonals: T(n,r) is the number of connected r-regular loopless multigraphs on n unlabeled nodes.
+10
18
1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 1, 1, 2, 1, 0, 0, 1, 0, 1, 0, 3, 0, 1, 0, 0, 1, 0, 1, 1, 4, 6, 6, 1, 0, 0, 1, 0, 1, 0, 6, 0, 19, 0, 1, 0, 0, 1, 0, 1, 1, 7, 15, 49, 50, 20, 1, 0, 0, 1, 0, 1, 0, 9, 0, 120, 0, 204, 0, 1, 0, 0, 1, 0, 1, 1, 11, 36, 263, 933, 1689, 832, 91, 1, 0, 0, 1, 0, 1, 0, 13, 0, 571, 0, 13303, 0, 4330, 0, 1, 0, 0, 1, 0, 1, 1, 15, 72, 1149, 12465, 90614, 252207, 187392, 25227, 509, 1, 0, 0
OFFSET
0,33
COMMENTS
Initial terms computed using 'Nauty and Traces' (see the link).
T(0,r) = 1 because the "nodeless" graph has zero (therefore in this case all) nodes of degree r (for any r).
T(1,0) = 1 because only the empty graph on one node is 0-regular on 1 node.
T(1,r) = 0, for r>0: there's only one node and loops aren't allowed.
T(2,r) = 1, for r>0 since the only edges that are allowed are between the only two nodes.
T(3,r) = parity of r, for r>0. There are no such graphs of odd degree and for an even degree the only multigraph satisfying that condition is the regular triangular multigraph.
T(n,0) = 0, for n>1 because graphs having more than a node of degree zero are disconnected.
T(n,1) = 0, for n>2 since any connected graph with more than two nodes must have a node of degree greater than two.
T(n,2) = 1, for n>1: the only graphs satisfying that condition are the cyclic graphs of order n.
This sequence may be derived from A333330 by inverse Euler transform. - Andrew Howroyd, Mar 15 2020
LINKS
Brendan McKay and Adolfo Piperno, Nauty and Traces
FORMULA
Column r is the inverse Euler transform of column r of A333330. - Andrew Howroyd, Mar 15 2020
EXAMPLE
Square matrix T(n,r) begins:
========================================================
n\r | 0 1 2 3 4 5 6 7
----+---------------------------------------------------
0 | 1, 1, 1, 1, 1, 1, 1, 1, ...
1 | 1, 0, 0, 0, 0, 0, 0, 0, ...
2 | 0, 1, 1, 1, 1, 1, 1, 1, ...
3 | 0, 0, 1, 0, 1, 0, 1, 0, ...
4 | 0, 0, 1, 2, 3, 4, 6, 7, ...
5 | 0, 0, 1, 0, 6, 0, 15, 0, ...
6 | 0, 0, 1, 6, 19, 49, 120, 263, ...
7 | 0, 0, 1, 0, 50, 0, 933, 0, ...
8 | 0, 0, 1, 20, 204, 1689, 13303, 90614, ...
...
PROG
# This program will execute the "else echo" line if the graph is nontrivial (first three columns, first two rows or both row and column indices are odd)
(nauty/shell)
for ((i=0; i<16; i++)); do
n=0
r=${i}
while ((n<=i)); do
if( (((r==0)) && ((n==0)) ) || ( ((r==0)) && ((n==1)) ) || ( ((r==1)) && ((n==2)) ) || ( ((r==2)) && !((n==1)) ) ); then
echo 1
elif( ((n==0)) || ((n==1)) || ((r==0)) || ((r==1)) || (! ((${r}%2 == 0)) && ! ((${n}%2 == 0)) || ( ((r==2)) && ((n==1)) )) ); then
echo 0
else echo $(./geng -c -d1 ${n} -q | ./multig -m${r} -r${r} -u 2>&1 | cut -d ' ' -f 7 | grep -v '^$'); fi;
((n++))
((r--))
done
done
CROSSREFS
Columns r=3..8 are: A000421, A129417, A129419, A129421, A129423, A129425.
Cf. A289986 (main diagonal), A333330 (not necessarily connected), A333397.
KEYWORD
nonn,tabl,hard
AUTHOR
Natan Arie Consigli, Dec 17 2019
STATUS
approved
Number of isomorphism classes of connected 3-regular (trivalent, cubic) loopless multigraphs of order 2n.
+10
16
1, 2, 6, 20, 91, 509, 3608, 31856, 340416, 4269971, 61133757, 978098997, 17228295555, 330552900516, 6853905618223, 152626436936272, 3631575281503404, 91928898608055819, 2466448432564961852, 69907637101781318907
OFFSET
1,2
COMMENTS
a(n) is also the number of isomorphism classes of connected 3-regular simple graphs of order 2n with possibly loops. - Nico Van Cleemput, Jun 04 2014
There are no graphs of order 2n+1 satisfying the condition above. - Natan Arie Consigli, Dec 20 2019
REFERENCES
A. T. Balaban, Enumeration of Cyclic Graphs, pp. 63-105 of A. T. Balaban, ed., Chemical Applications of Graph Theory, Ac. Press, 1976; see p. 92 [gives incorrect a(6)].
CRC Handbook of Combinatorial Designs, 1996, p. 651 [or: 2006, table 4.40].
LINKS
Jan-Peter Börnsen, Anton E. M. van de Ven, Tangent Developable Orbit Space of an Octupole, arXiv:1807.04817 [hep-th], 2018.
G. Brinkmann, N. Van Cleemput, T. Pisanski, Generation of various classes of trivalent graphs, Theoretical Computer Science 502, 2013, pp.16-29.
Brendan McKay and others, Nauty Traces
FORMULA
Inverse Euler transform of A129416. - Andrew Howroyd, Mar 19 2020
EXAMPLE
From Natan Arie Consigli, Dec 20 2019: (Start)
a(1) = 1: with two nodes the only viable option is the triple edged path multigraph.
a(2) = 4: with four nodes we have two cases: the tetrahedral graph and the square graph with single and double edges on opposite sides.
(End)
PROG
(nauty/bash) for n in {1..10}; do geng -cqD3 $[2*$n] | multig -ur3; done # Sean A. Irvine, Sep 24 2015
CROSSREFS
Column k=3 of A328682 (table of k-regular n-node multigraphs).
Cf. A129416, A005967 (loops allowed), A129417, A129419, A129421, A129423, A129425, A002851 (no multiedges).
KEYWORD
nonn,hard,more
EXTENSIONS
More terms from Brendan McKay, Apr 15 2007
a(13)-a(20) from Andrew Howroyd, Mar 19 2020
STATUS
approved
Number of isomorphism classes of connected 4-regular loopless multigraphs of order n.
+10
10
1, 0, 1, 1, 3, 6, 19, 50, 204, 832, 4330, 25227, 171886, 1303725, 10959478, 100230117, 989280132, 10455393155, 117701173970, 1405165683359, 17726785643045, 235585551038117, 3289367315407521, 48136794098893837, 736721822918719557, 11768987500655142988
OFFSET
0,5
COMMENTS
Initial terms computed using software at http://users.cecs.anu.edu.au/~bdm/nauty/
Obtained from A129418 by an inverse Euler transform. - R. J. Mathar, Mar 09 2019
LINKS
Brendan McKay and Adolfo Piperno, Nauty and Traces
PROG
(nauty/bash) geng -c -d1 ${n} -q | multig -r4 -u # Natan Arie Consigli, Jun 05 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Brendan McKay, Apr 15 2007
EXTENSIONS
a(0)-a(1) prepended by Natan Arie Consigli, Jun 05 2017
a(18)-a(25) from Andrew Howroyd, Mar 17 2020
STATUS
approved
Number of isomorphism classes of connected 5-regular loopless multigraphs of order 2n.
+10
9
1, 4, 49, 1689, 187392, 46738368, 20446754006, 14021056991357, 14141140657400321, 20047531681346319557, 38567298550226625579671, 97861817259606311572409609, 319914449561753621623849929222, 1320949150506412557504787822889933, 6773751604973857152218372443743552754
OFFSET
1,2
COMMENTS
Initial terms computed using software at http://users.cecs.anu.edu.au/~bdm/nauty/
LINKS
Brendan McKay and Adolfo Piperno, Nauty and Traces
FORMULA
Inverse Euler transform of A129420. - Andrew Howroyd, Mar 17 2020
PROG
(nauty/bash) geng -c -d1 $[2*$n] -q | multig -r5 -u # Natan Arie Consigli, Dec 20 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Brendan McKay, Apr 15 2007
EXTENSIONS
a(8)-a(15) from Andrew Howroyd, Mar 21 2020
STATUS
approved
Number of isomorphism classes of connected 8-regular loopless multigraphs of order n.
+10
9
0, 1, 1, 9, 36, 571, 12465, 543116, 35241608, 3230417239, 397514307014, 63830872225605, 13080448625309965, 3358687593761378470, 1063838242661288090062, 410057057694777406364151, 190064879184725871853627854, 104825763290631293396894238206
OFFSET
1,4
COMMENTS
Initial terms computed using software at http://users.cecs.anu.edu.au/~bdm/nauty/
LINKS
Brendan McKay and Adolfo Piperno, Nauty and Traces
FORMULA
Inverse Euler transform of A129426. - Andrew Howroyd, Mar 17 2020
PROG
(nauty/bash) geng -c -d1 ${n} -q | multig -r8 -u # Natan Arie Consigli, Jun 05 2017
CROSSREFS
KEYWORD
nonn
AUTHOR
Brendan McKay, Apr 15 2007
EXTENSIONS
Deleted a(0) and a(1). - N. J. A. Sloane, Jan 11 2020
a(1)=0 prepended and a(12)-a(18) from Andrew Howroyd, Mar 17 2020
STATUS
approved
Number of isomorphism classes of 6-regular loopless multigraphs of order n.
+10
8
0, 1, 1, 7, 16, 128, 955, 13467, 253373, 6466074, 205749149, 7943313377, 363853255012, 19485170158346, 1205488841884007, 85308028236495340, 6846462326434510551, 618498122199399056707, 62478078728492272712838, 7015617595855429187696753
OFFSET
1,4
COMMENTS
Initial terms computed using software at http://users.cecs.anu.edu.au/~bdm/nauty/
FORMULA
Euler transform of A129421. - Andrew Howroyd, Mar 14 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
Brendan McKay, Apr 15 2007
EXTENSIONS
a(1)=0 prepended and a(14)-a(20) from Andrew Howroyd, Mar 17 2020
STATUS
approved
Number of isomorphism classes of connected 7-regular loopless multigraphs of order 2n.
+10
8
1, 7, 263, 90614, 165041329, 861723619902, 10351918806321621, 253216618556625008961, 11542463442106815907796586, 915449471830886733265105097578
OFFSET
1,2
COMMENTS
Initial terms computed using software at http://users.cecs.anu.edu.au/~bdm/nauty/
LINKS
Brendan McKay and Adolfo Piperno, Nauty and Traces
FORMULA
Inverse Euler transform of A129424. - Andrew Howroyd, Mar 21 2020
PROG
(nauty/bash) geng -c -d1 $[2*$n] -q | multig -r7 -u # Natan Arie Consigli, Dec 20 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Brendan McKay, Apr 15 2007
EXTENSIONS
a(7)-a(10) from Andrew Howroyd, Mar 21 2020
STATUS
approved
Number of isomorphism classes of connected 6-regular multigraphs of order n, loops allowed.
+10
8
1, 3, 9, 47, 291, 2789, 35646, 622457, 14019433, 395208047, 13561118011, 555498075986, 26751985389463, 1496090275853092, 96154662330195078, 7038800665162854369, 582281978355495520076, 54057819690711609171892, 5597375885970846586170796, 642829784413912305507730345
OFFSET
1,2
COMMENTS
Initial terms computed using software at http://users.cecs.anu.edu.au/~bdm/nauty/
FORMULA
Inverse Euler transform of A129433. - Andrew Howroyd, Mar 19 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
Brendan McKay, Apr 15 2007
EXTENSIONS
a(13)-a(20) added by Andrew Howroyd, Mar 19 2020
STATUS
approved
Number of connected 2n-regular loopless multigraphs on 2n unlabeled nodes.
+10
4
1, 1, 3, 120, 543116, 635669057538, 112368754788708539549
OFFSET
0,3
COMMENTS
Multigraphs are loopless.
There are no (2n+1)-regular multigraphs with (2n+1) number of points, for every nonnegative n.
FORMULA
a(n) = A328682(2*n, 2*n). - Andrew Howroyd, Mar 18 2020
PROG
(nauty/bash) for n in {1..4}; do geng -c -d1 $[2*$n] -q | multig -m$[2*$n] -r$[2*$n] -u; done
CROSSREFS
KEYWORD
nonn,more,hard
AUTHOR
Natan Arie Consigli, Aug 19 2017
EXTENSIONS
a(5)-a(6) from Andrew Howroyd, Mar 18 2020
STATUS
approved

Search completed in 0.059 seconds