[go: up one dir, main page]

login
A000421
Number of isomorphism classes of connected 3-regular (trivalent, cubic) loopless multigraphs of order 2n.
16
1, 2, 6, 20, 91, 509, 3608, 31856, 340416, 4269971, 61133757, 978098997, 17228295555, 330552900516, 6853905618223, 152626436936272, 3631575281503404, 91928898608055819, 2466448432564961852, 69907637101781318907
OFFSET
1,2
COMMENTS
a(n) is also the number of isomorphism classes of connected 3-regular simple graphs of order 2n with possibly loops. - Nico Van Cleemput, Jun 04 2014
There are no graphs of order 2n+1 satisfying the condition above. - Natan Arie Consigli, Dec 20 2019
REFERENCES
A. T. Balaban, Enumeration of Cyclic Graphs, pp. 63-105 of A. T. Balaban, ed., Chemical Applications of Graph Theory, Ac. Press, 1976; see p. 92 [gives incorrect a(6)].
CRC Handbook of Combinatorial Designs, 1996, p. 651 [or: 2006, table 4.40].
LINKS
Jan-Peter Börnsen, Anton E. M. van de Ven, Tangent Developable Orbit Space of an Octupole, arXiv:1807.04817 [hep-th], 2018.
G. Brinkmann, N. Van Cleemput, T. Pisanski, Generation of various classes of trivalent graphs, Theoretical Computer Science 502, 2013, pp.16-29.
Brendan McKay and others, Nauty Traces
FORMULA
Inverse Euler transform of A129416. - Andrew Howroyd, Mar 19 2020
EXAMPLE
From Natan Arie Consigli, Dec 20 2019: (Start)
a(1) = 1: with two nodes the only viable option is the triple edged path multigraph.
a(2) = 4: with four nodes we have two cases: the tetrahedral graph and the square graph with single and double edges on opposite sides.
(End)
PROG
(nauty/bash) for n in {1..10}; do geng -cqD3 $[2*$n] | multig -ur3; done # Sean A. Irvine, Sep 24 2015
CROSSREFS
Column k=3 of A328682 (table of k-regular n-node multigraphs).
Cf. A129416, A005967 (loops allowed), A129417, A129419, A129421, A129423, A129425, A002851 (no multiedges).
Sequence in context: A027321 A027315 A005965 * A009244 A104985 A210690
KEYWORD
nonn,hard,more
EXTENSIONS
More terms from Brendan McKay, Apr 15 2007
a(13)-a(20) from Andrew Howroyd, Mar 19 2020
STATUS
approved