[go: up one dir, main page]

login
Search: a124069 -id:a124069
     Sort: relevance | references | number | modified | created      Format: long | short | data
Perfect Digital Invariants: numbers that are the sum of some fixed power of their digits.
+10
33
0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 153, 370, 371, 407, 1634, 4150, 4151, 8208, 9474, 54748, 92727, 93084, 194979, 548834, 1741725, 4210818, 9800817, 9926315, 14459929, 24678050, 24678051, 88593477, 146511208, 472335975, 534494836, 912985153
OFFSET
1,3
COMMENTS
The old name was "Powerful numbers, definition (3)". Cf. A001694, A007532. - N. J. A. Sloane, Jan 16 2022.
Randle has suggested that these numbers be called "powerful", but this usually refers to a distinct property related to prime factorization, cf. A001694, A036966, A005934.
Numbers m such that m = Sum_{i=1..k} d(i)^s for some s, where d(1..k) are the decimal digits of m.
Superset of A005188 (Plusperfect, narcissistic or Armstrong numbers: s=k), A046197 (s=3), A052455 (s=4), A052464 (s=5), A124068 (s=6, 7), A124069 (s=8). - R. J. Mathar, Jun 15 2009, Jun 22 2009
LINKS
Jerome Raulin, Table of n, a(n) for n = 1..345 (terms 1..255 from Joseph Myers)
Encyclopaedia Britannica, Perfect digital invariant, article "Number patterns and curiosities" online since July 26, 1999, revised Aug 25, 2000.
Donald E. Knuth, The Art of Computer Programming, Volume 4, Pre-Fascicle 9B A Potpourri of Puzzles
J. Randle, Powerful numbers, Note 3208, Math. Gaz. 52 (1968), 383.
J. Randle, Powerful numbers, Note 3208, Math. Gaz. 52 (1968), 383. [Annotated scanned copy]
Eric Weisstein's World of Mathematics, Narcissistic Number
EXAMPLE
153 = 1^3 + 5^3 + 3^3, 4210818 = 4^7 + 2^7 + 1^7 + 0^7 + 8^7 + 1^7 + 8^7.
MATHEMATICA
Select[Range[0, 10^5], Function[m, AnyTrue[Function[k, Total@ Map[Power[#, k] &, IntegerDigits@ m]] /@ Range@ 10, # == m &]]] (* Michael De Vlieger, Feb 08 2016, Version 10 *)
PROG
(PARI) is(n)=if(n<10, return(1)); my(d=digits(n), m=vecmax(d)); if(m<2, return(0)); for(k=3, logint(n, m), if(sum(i=1, #d, d[i]^k)==n, return(1))); 0 \\ Charles R Greathouse IV, Feb 06 2017
(PARI) select( is_A023052(n, b=10)={n<b|| forstep(p=logint(n, max(vecmax(b=digits(n, b)), 2)), 2, -1, my(t=vecsum([d^p|d<-b])); t>n|| return(t==n))}, [0..10^5]) \\ M. F. Hasler, Nov 21 2019
CROSSREFS
Cf. A001694 (powerful numbers: p|n => p^2|n), A005934 (highly powerful numbers).
Cf. A005188 (here the power must be equal to the number of digits).
In other bases: A162216 (base 3), A162219 (base 4), A162222 (base 5), A162225 (base 6), A162228 (base 7), A162231 (base 8), A162234 (base 9).
KEYWORD
nonn,base,nice
EXTENSIONS
Computed to 10^50 by G. N. Gusev (GGN(AT)rm.yaroslavl.ru)
Computed to 10^74 by Xiaoqing Tang
A-number typo corrected by R. J. Mathar, Jun 22 2009
Computed to 10^105 by Joseph Myers
Cross-references edited by Joseph Myers, Jun 28 2009
Edited by M. F. Hasler, Nov 21 2019
STATUS
approved
Fixed points for operation of repeatedly replacing a number with the sum of the cubes of its digits.
+10
26
0, 1, 153, 370, 371, 407
OFFSET
1,3
COMMENTS
Suppose n has d digits; then the sum of the cubes of its digits is <= 729d and n >= 10^(d-1). So d <= 5. It is now easy to check that the numbers shown are the only solutions. [Corrected by M. F. Hasler, Apr 12 2015]
This is row n=3 of A252648. - M. F. Hasler, Apr 12 2015
REFERENCES
J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 153, p. 50, Ellipses, Paris 2008.
G. H. Hardy, A Mathematician's Apology, Cambridge, 1967.
J. Shallit, Number theory and formal languages, in Emerging applications of number theory (Minneapolis, MN, 1996), 547-570, IMA Vol. Math. Appl., 109, Springer, New York, 1999.
David Wells, The Penguin Dictionary of Curious and Interesting Numbers. Penguin Books, NY, 1986, Revised edition 1987. See p. 140.
LINKS
H. Lehning, La migration des nombres vers le bonheur, Tangente: L'aventure mathématique, pp. 27 No. 108 Jan-Feb 2006 Pole Paris.
FORMULA
A055012(a(n))=a(n); A165331(a(n))=0; subset of A031179. - Reinhard Zumkeller, Sep 17 2009
EXAMPLE
1^3 + 5^3 + 3^3 = 153. 3^3+7^3 +0^3 = 370.
MATHEMATICA
Select[Range[0, 407], Total[IntegerDigits[#]^3]==# &] (* Stefano Spezia, Sep 08 2024 *)
PROG
(PARI) for(n=0, 10^5, A055012(n)==n&&print1(n", ")) \\ M. F. Hasler, Apr 12 2015
KEYWORD
nonn,fini,full,base
AUTHOR
Richard C. Schroeppel
STATUS
approved
Irregular table of perfect digital invariants for n > 1, i.e., numbers equal to the sum of n-th powers of their digits, read by rows.
+10
13
1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 0, 1, 153, 370, 371, 407, 0, 1, 1634, 8208, 9474, 0, 1, 4150, 4151, 54748, 92727, 93084, 194979, 0, 1, 548834, 0, 1, 1741725, 4210818, 9800817, 9926315, 14459929, 0, 1, 24678050, 24678051, 88593477, 0, 1, 146511208, 472335975, 534494836, 912985153, 0, 1, 4679307774
OFFSET
0,4
COMMENTS
The third column is listed in A003321. - M. F. Hasler, Feb 16 2015
For a number x >= 10^(d-1) with d digits, the sum of n-th powers of these digits cannot exceed d*9^n. Therefore there is only a finite number of possible perfect digital invariants for any n, the largest of which has at most d* digits, where d* = 1+(n*log(9)+log d*)/log(10). - M. F. Hasler, Apr 14 2015
EXAMPLE
The table starts:
1; (n = 0; 1 = 1^0.)
0, 1, 2, 3, 4, 5, 6, 7, 8, 9; (n = 1)
0, 1; (n = 2)
0, 1, 153, 370, 371, 407; (n = 3, A046197)
0, 1, 1634, 8208, 9474; (n = 4, A052455)
0, 1, 4150, 4151, 54748, 92727, 93084, 194979; (n = 5, A052464)
0, 1, 548834; (n = 6)
0, 1, 1741725, 4210818, 9800817, 9926315, 14459929; (n = 7, A124068)
0, 1, 24678050, 24678051, 88593477; (n = 8, A124069)
0, 1, 146511208, 472335975, 534494836, 912985153; (n = 9, A226970)
The third column corresponds to A003321.
The term 153 is member of the row n=3 because 153 = 1^3 + 5^3 + 3^3. - M. F. Hasler, Apr 14 2015
PROG
(PARI) row(n)={m=1; while(m*9^n>=10^m, m++); for(k=1, 10^m, sum(i=1, #d=digits(k), d[i]^n)==k && print1(k, ", "))}
for(n=0, 7, print1(row(n), ", "))
(Python)
from itertools import combinations_with_replacement
A252648_list = [1]
for m in range(1, 21):
l, L, dm, xlist, q = 1, 1, [d**m for d in range(10)], [0], 9**m
while l*q >= L:
for c in combinations_with_replacement(range(1, 10), l):
n = sum(dm[d] for d in c)
if sorted(int(d) for d in str(n)) == [0]*(len(str(n))-len(c))+list(c):
xlist.append(n)
l += 1
L *= 10
A252648_list.extend(sorted(xlist)) # Chai Wah Wu, Jan 04 2016
CROSSREFS
Cf. A255668 (row lengths).
KEYWORD
nonn,base,tabf
AUTHOR
Derek Orr, Dec 19 2014
EXTENSIONS
I added two links. - Don Knuth, Sep 10 2015
STATUS
approved
Fixed points for operation of repeatedly replacing a number with the sum of the fourth power of its digits.
+10
11
0, 1, 1634, 8208, 9474
OFFSET
1,3
COMMENTS
This is row n=4 in A252648. - M. F. Hasler, Apr 12 2015
FORMULA
a(n) = A055013(a(n)). - M. F. Hasler, Apr 12 2015
EXAMPLE
a(2)=1634 since 1^4+6^4+3^4+4^4=1+1296+81+256=1634
PROG
(PARI) for(n=0, 10^5, A055013(n)==n&&print1(n", ")) \\ M. F. Hasler, Apr 12 2015
KEYWORD
base,full,nonn,fini
AUTHOR
Henry Bottomley, Mar 15 2000
STATUS
approved
Fixed points for operation of repeatedly replacing a number with the sum of the fifth power of its digits.
+10
9
0, 1, 4150, 4151, 54748, 92727, 93084, 194979
OFFSET
1,3
COMMENTS
Equivalently, numbers equal to the sum of 5th powers of their decimal digits. Since this sum is <= 9^5*d for a d-digit number n >= 10^(d-1), there cannot be such a number with more than 6 digits. - M. F. Hasler, Apr 12 2015
LINKS
G. K. Patil, Ramanujan's Life And His Contributions In The Field Of Mathematics, International Journal of Scientific Research and Engineering Studies (IJSRES), 1(6) (2014), ISSN: 2349-8862.
EXAMPLE
a(2) = 4150 since 4^5 + 1^5 + 5^5 + 0^5 = 1024 + 1 + 3125 + 0 = 4150.
PROG
(PARI) for(n=0, 10^6, A055014(n)==n&&print1(n", ")) \\ M. F. Hasler, Apr 12 2015
KEYWORD
base,fini,full,nonn
AUTHOR
Henry Bottomley, Mar 15 2000
STATUS
approved
Fixed points for operation of repeatedly replacing a number with the sum of the seventh power of its digits.
+10
9
0, 1, 1741725, 4210818, 9800817, 9926315, 14459929
OFFSET
1,3
COMMENTS
The sequence "Fixed points for operation of repeatedly replacing a number by the sum of the sixth power of its digits" has just 3 terms: 0, 1, and 548834.
For a d-digit number n >= 10^(d-1), the sum of 7th powers of its digits is <= 9^7*d, therefore these numbers cannot exceed 41205040. - M. F. Hasler, Apr 12 2015
EXAMPLE
1741725 = 1^7 + 7^7 + 4^7 + 1^7 + 7^7 + 2^7 + 5^7.
PROG
(PARI) isok(n) = my(d = digits(n)); sum(k=1, #d, d[k]^7) == n; \\ Michel Marcus, Feb 21 2015
(PARI) for(n=0, 41205040, A123253(n)==n&&print1(n", ")) \\ M. F. Hasler, Apr 12 2015
KEYWORD
base,fini,full,nonn
AUTHOR
STATUS
approved
Fixed points for the operation of repeatedly replacing a number with the sum of the ninth powers of its digits.
+10
7
0, 1, 146511208, 472335975, 534494836, 912985153
OFFSET
1,3
COMMENTS
The only six integers equal to the sum of the ninth powers of their digits.
This is row n=9 of A252648. For a d-digit number n >= 10^(d-1), the sum of 9th powers of its digits is <= 9^9*d, therefore n <= 4112105981. - M. F. Hasler, Apr 12 2015
EXAMPLE
a(3) = A003321(9);
a(4) = 472335975 = 4^9 + 7^9 + 2^9 + 3^9 + 3^9 + 5^9 + 9^9 + 7^9 + 5^9.
PROG
(PARI) is_A226970(n)=n==sum(i=1, #n=digits(n), n[i]^9)
for(n=0, 4112105981, is_A226970(n)&&print1(n", ")) \\ M. F. Hasler, Apr 12 2015
KEYWORD
nonn,base,fini,full
AUTHOR
Michel Lagneau, Jun 24 2013
STATUS
approved
Number of perfect digital invariants of order n, i.e., numbers equal to the sum of n-th powers of their digits.
+10
3
1, 10, 2, 6, 5, 8, 3, 7, 5, 6, 3, 10, 2, 3, 3, 2, 4, 6, 2, 6, 3, 4, 2, 7, 5, 10, 2, 9, 2, 9, 2, 6, 3, 5, 3, 6, 3, 5, 5, 7, 2, 2, 4, 9, 6, 9, 5, 7, 2, 3, 2, 4, 2, 3, 6, 4, 5, 4, 2, 4, 4, 4, 3, 7, 3, 6, 3, 4, 3, 3, 4, 3, 4, 5, 3, 4, 5, 5, 3, 3, 2, 3, 2, 4, 3, 8, 3, 5, 2, 7, 3
OFFSET
0,2
COMMENTS
Row lengths of the table A252648.
For a number with d digits, the sum of n-th powers cannot exceed d*9^n, but the number is not less than 10^(d-1). Therefore there is only a finite number of possible perfect digital invariants for any n, the largest of which has at most d* digits, where d* = 1+(n*log(9)+log d*)/log(10).
FORMULA
a(n) >= 2 for all n > 0, since 0 and 1 are digital invariants for any power n > 0.
EXAMPLE
a(0)=1 because 1 is the only number equal to the sum of 0th powers of its digits.
a(1)=10 because { 0, 1, ... 9 } are the only numbers equal to the sum of their digits (taken to the power 1).
a(2)=2 because 0 and 1 are the only numbers equal to the sum of the squares of their digits.
a(3)=6 because { 0, 1, 153, 370, 371, 407 } is the set of all numbers equal to the sum of the 3rd powers of their digits, cf. A046197.
For more examples, see the table A252648.
MATHEMATICA
Reap@ For[n = 0, n < 6, n++, Sow@ Length@ Select[Range[0, 10^(n + 1)], Plus @@ (IntegerDigits[#]^n) == # &]] // Flatten // Rest (* Michael De Vlieger, Apr 14 2015 *)
KEYWORD
nonn,base
AUTHOR
M. F. Hasler, Apr 14 2015
EXTENSIONS
a(10)-a(90) from Don Knuth, Sep 09 2015
STATUS
approved

Search completed in 0.011 seconds