OFFSET
1,3
COMMENTS
The old name was "Powerful numbers, definition (3)". Cf. A001694, A007532. - N. J. A. Sloane, Jan 16 2022.
Randle has suggested that these numbers be called "powerful", but this usually refers to a distinct property related to prime factorization, cf. A001694, A036966, A005934.
Numbers m such that m = Sum_{i=1..k} d(i)^s for some s, where d(1..k) are the decimal digits of m.
LINKS
Jerome Raulin, Table of n, a(n) for n = 1..345 (terms 1..255 from Joseph Myers)
Encyclopaedia Britannica, Perfect digital invariant, article "Number patterns and curiosities" online since July 26, 1999, revised Aug 25, 2000.
Hans Havermann, Extended table of values for A023052 and A046074
Donald E. Knuth, The Art of Computer Programming, Volume 4, Pre-Fascicle 9B A Potpourri of Puzzles
J. Randle, Powerful numbers, Note 3208, Math. Gaz. 52 (1968), 383.
J. Randle, Powerful numbers, Note 3208, Math. Gaz. 52 (1968), 383. [Annotated scanned copy]
Eric Weisstein's World of Mathematics, Narcissistic Number
EXAMPLE
153 = 1^3 + 5^3 + 3^3, 4210818 = 4^7 + 2^7 + 1^7 + 0^7 + 8^7 + 1^7 + 8^7.
MATHEMATICA
Select[Range[0, 10^5], Function[m, AnyTrue[Function[k, Total@ Map[Power[#, k] &, IntegerDigits@ m]] /@ Range@ 10, # == m &]]] (* Michael De Vlieger, Feb 08 2016, Version 10 *)
PROG
(PARI) is(n)=if(n<10, return(1)); my(d=digits(n), m=vecmax(d)); if(m<2, return(0)); for(k=3, logint(n, m), if(sum(i=1, #d, d[i]^k)==n, return(1))); 0 \\ Charles R Greathouse IV, Feb 06 2017
(PARI) select( is_A023052(n, b=10)={n<b|| forstep(p=logint(n, max(vecmax(b=digits(n, b)), 2)), 2, -1, my(t=vecsum([d^p|d<-b])); t>n|| return(t==n))}, [0..10^5]) \\ M. F. Hasler, Nov 21 2019
CROSSREFS
Cf. A005188 (here the power must be equal to the number of digits).
KEYWORD
nonn,base,nice
AUTHOR
EXTENSIONS
Computed to 10^50 by G. N. Gusev (GGN(AT)rm.yaroslavl.ru)
Computed to 10^74 by Xiaoqing Tang
A-number typo corrected by R. J. Mathar, Jun 22 2009
Computed to 10^105 by Joseph Myers
Cross-references edited by Joseph Myers, Jun 28 2009
Edited by M. F. Hasler, Nov 21 2019
STATUS
approved