[go: up one dir, main page]

login
A252648
Irregular table of perfect digital invariants for n > 1, i.e., numbers equal to the sum of n-th powers of their digits, read by rows.
13
1, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 0, 1, 0, 1, 153, 370, 371, 407, 0, 1, 1634, 8208, 9474, 0, 1, 4150, 4151, 54748, 92727, 93084, 194979, 0, 1, 548834, 0, 1, 1741725, 4210818, 9800817, 9926315, 14459929, 0, 1, 24678050, 24678051, 88593477, 0, 1, 146511208, 472335975, 534494836, 912985153, 0, 1, 4679307774
OFFSET
0,4
COMMENTS
The third column is listed in A003321. - M. F. Hasler, Feb 16 2015
For a number x >= 10^(d-1) with d digits, the sum of n-th powers of these digits cannot exceed d*9^n. Therefore there is only a finite number of possible perfect digital invariants for any n, the largest of which has at most d* digits, where d* = 1+(n*log(9)+log d*)/log(10). - M. F. Hasler, Apr 14 2015
EXAMPLE
The table starts:
1; (n = 0; 1 = 1^0.)
0, 1, 2, 3, 4, 5, 6, 7, 8, 9; (n = 1)
0, 1; (n = 2)
0, 1, 153, 370, 371, 407; (n = 3, A046197)
0, 1, 1634, 8208, 9474; (n = 4, A052455)
0, 1, 4150, 4151, 54748, 92727, 93084, 194979; (n = 5, A052464)
0, 1, 548834; (n = 6)
0, 1, 1741725, 4210818, 9800817, 9926315, 14459929; (n = 7, A124068)
0, 1, 24678050, 24678051, 88593477; (n = 8, A124069)
0, 1, 146511208, 472335975, 534494836, 912985153; (n = 9, A226970)
The third column corresponds to A003321.
The term 153 is member of the row n=3 because 153 = 1^3 + 5^3 + 3^3. - M. F. Hasler, Apr 14 2015
PROG
(PARI) row(n)={m=1; while(m*9^n>=10^m, m++); for(k=1, 10^m, sum(i=1, #d=digits(k), d[i]^n)==k && print1(k, ", "))}
for(n=0, 7, print1(row(n), ", "))
(Python)
from itertools import combinations_with_replacement
A252648_list = [1]
for m in range(1, 21):
l, L, dm, xlist, q = 1, 1, [d**m for d in range(10)], [0], 9**m
while l*q >= L:
for c in combinations_with_replacement(range(1, 10), l):
n = sum(dm[d] for d in c)
if sorted(int(d) for d in str(n)) == [0]*(len(str(n))-len(c))+list(c):
xlist.append(n)
l += 1
L *= 10
A252648_list.extend(sorted(xlist)) # Chai Wah Wu, Jan 04 2016
CROSSREFS
Cf. A255668 (row lengths).
Sequence in context: A093691 A004176 A085124 * A054054 A115353 A031298
KEYWORD
nonn,base,tabf
AUTHOR
Derek Orr, Dec 19 2014
EXTENSIONS
I added two links. - Don Knuth, Sep 10 2015
STATUS
approved