OFFSET
0,2
COMMENTS
8*a(n) is the y value of a solution (x, y) to the Diophantine equation 2*x^3+12*x^2 = y^2. The corresponding x value is A152811(n+1).
LINKS
Vincenzo Librandi, Table of n, a(n) for n = 0..10000
Index entries for linear recurrences with constant coefficients, signature (4,-6,4,-1).
FORMULA
G.f.: (1+5*x-4*x^2+x^3)/(1-x)^4.
a(n) = A058794(n)/2.
a(n) = A117560(n+2) - n - 1.
a(2*n) = A144129(n+1).
a(2*n-1) = A141530(n+1). a(n) = -a(-n-4). - Bruno Berselli, Sep 05 2011
EXAMPLE
a(5) = (5+3)^2*5/2+1 = 64*5/2+1 = 161.
PROG
(PARI) {for(n=0, 40, print1((n+3)^2*n/2+1, ", "))}
(Magma) [(n+3)^2*n/2 + 1: n in [0..50]]; // Vincenzo Librandi, Sep 06 2011
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Klaus Brockhaus, Jan 12 2009
STATUS
approved