[go: up one dir, main page]

login
Search: a117560 -id:a117560
     Sort: relevance | references | number | modified | created      Format: long | short | data
(n+3)^2*n/2 + 1.
+10
4
1, 9, 26, 55, 99, 161, 244, 351, 485, 649, 846, 1079, 1351, 1665, 2024, 2431, 2889, 3401, 3970, 4599, 5291, 6049, 6876, 7775, 8749, 9801, 10934, 12151, 13455, 14849, 16336, 17919, 19601, 21385, 23274, 25271, 27379, 29601, 31940, 34399, 36981
OFFSET
0,2
COMMENTS
8*a(n) is the y value of a solution (x, y) to the Diophantine equation 2*x^3+12*x^2 = y^2. The corresponding x value is A152811(n+1).
FORMULA
G.f.: (1+5*x-4*x^2+x^3)/(1-x)^4.
a(n) = A058794(n)/2.
a(n) = A117560(n+2) - n - 1.
a(2*n) = A144129(n+1).
a(2*n-1) = A141530(n+1). a(n) = -a(-n-4). - Bruno Berselli, Sep 05 2011
EXAMPLE
a(5) = (5+3)^2*5/2+1 = 64*5/2+1 = 161.
PROG
(PARI) {for(n=0, 40, print1((n+3)^2*n/2+1, ", "))}
(Magma) [(n+3)^2*n/2 + 1: n in [0..50]]; // Vincenzo Librandi, Sep 06 2011
CROSSREFS
Cf. A058794 (row 3 of A007754), A117560 (n*(n^2-1)/2-1), A144129 (4*n^3-3*n), A141530, A152811 (2*(n^2+2*n-2)).
KEYWORD
nonn,easy
AUTHOR
Klaus Brockhaus, Jan 12 2009
STATUS
approved
a(n) = floor(n*(n^3-n-3)/(2*(n-1))).
+10
1
3, 15, 38, 73, 124, 194, 286, 403, 548, 724, 934, 1181, 1468, 1798, 2174, 2599, 3076, 3608, 4198, 4849, 5564, 6346, 7198, 8123, 9124, 10204, 11366, 12613, 13948, 15374, 16894, 18511, 20228, 22048, 23974, 26009, 28156, 30418, 32798, 35299, 37924
OFFSET
2,1
COMMENTS
a[n-1] is one approximation for the upper bound of the "antimagic constant" of an antimagic square of order n. The antimagic constant here is defined as the least integer in the set of consecutive integers to which the rows, columns and diagonals of the square sum. By analogy with the magic constant. This approximation follows from the observation that Sum[m + k, {k, 0, 2*n + 1}] <= (2*Sum[k, {k, 1, n^2}]) + (2*m) + (2*m + 1) where m is the antimagic constant for an antimagic square of order n. Stricter bounds seem likely to exist. See A117560 for the lower bounds. Note there exist no antimagic squares of order two or three, but the values are indexed here for completeness.
LINKS
Eric Weisstein's World of Mathematics, Antimagic Square.
FORMULA
a(n) = floor(n*(n^3-n-3)/(2*(n-1))).
G.f.: x^2*(3+3*x-4*x^2-x^3+3*x^4-x^5)/(1-x)^4. - Colin Barker, Mar 29 2012
EXAMPLE
a[3] = 38 because the antimagic constant of an antimagic square of order 4 cannot exceed 38 (see comments)
MATHEMATICA
Table[Floor[n(n^3-n-3)/(2*(n-1))], {n, 2, 50}]
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Joseph Biberstine (jrbibers(AT)indiana.edu), Mar 29 2006
STATUS
approved
a(n) is the sum of all products of pairs of numbers joined by the diagonals of an n-gon when its vertices are numbered from 1 to n in order.
+10
0
0, 0, 0, 11, 40, 99, 203, 370, 621, 980, 1474, 2133, 2990, 4081, 5445, 7124, 9163, 11610, 14516, 17935, 21924, 26543, 31855, 37926, 44825, 52624, 61398, 71225, 82186, 94365, 107849, 122728, 139095, 157046, 176680, 198099, 221408, 246715, 274131, 303770
OFFSET
1,4
COMMENTS
For n < 4, no n-gon has a diagonal and thus a(n)=0.
FORMULA
a(n) = 3*binomial(n+1, 4) - n = (n-2)*(n-1)*n*(n+1)/8 - n for n>=3; a(1) = a(2) = 0.
a(n) = A000914(n-1) - A006527(n).
From Colin Barker, Aug 19 2020: (Start)
G.f.: x^4*(11 - 15*x + 9*x^2 - 2*x^3) / (1 - x)^5.
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5) for n>7.
(End)
E.g.f.: x + x^2 + exp(x)*x*(-8 + 4*x^2 + x^3)/8. - Stefano Spezia, Aug 19 2020
EXAMPLE
The diagonals of 4-gon would be numbered (1,3) and (2,4). So a(4) = 1*3 + 2*4 = 11.
The diagonals of 5-gon would be numbered (1,3), (1,4), (2,4), (2,5) and (3,5). So a(5) = 1*3 + 1*4 + 2*4 + 2*5 + 3*5 = 40.
PROG
(PARI) concat([0, 0, 0], Vec(x^4*(11 - 15*x + 9*x^2 - 2*x^3) / (1 - x)^5 + O(x^40))) \\ Colin Barker, Aug 19 2020
CROSSREFS
Partial sums of A117560. Cf. A000914 (products including sides), A007569, A007678.
KEYWORD
nonn,easy
AUTHOR
Mohammed Yaseen, Aug 17 2020
STATUS
approved

Search completed in 0.007 seconds