[go: up one dir, main page]

login
A144129
a(n) = ChebyshevT(3, n).
15
0, 1, 26, 99, 244, 485, 846, 1351, 2024, 2889, 3970, 5291, 6876, 8749, 10934, 13455, 16336, 19601, 23274, 27379, 31940, 36981, 42526, 48599, 55224, 62425, 70226, 78651, 87724, 97469, 107910, 119071, 130976, 143649, 157114, 171395, 186516
OFFSET
0,3
COMMENTS
The general formula for alternating sums of powers of odd integers is in terms of the Swiss-Knife polynomials P(n,x) A153641 (P(n,0)-(-1)^k*P(n,2*k))/2. Here n=3, thus a(k) = |(P(3,0)-(-1)^k*P(3,2*k))/2|. - Peter Luschny, Jul 12 2009
Partial sums of A069190. - J. M. Bergot, Jul 13 2013
FORMULA
a(n) = 4*n^3 - 3*n. - Klaus Brockhaus, Jan 11 2009
G.f.: x*(1 + 22*x + x^2)/(1 - x)^4. - Klaus Brockhaus, Jan 11 2009
a(n) = cosh(3*arccosh(n)) = cos(3*arccos(n)). - Artur Jasinski, Feb 14 2010
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4). - Vincenzo Librandi, Jun 30 2012
a(n) = 24*A000292(n-1) + n. - Bruce J. Nicholson, Jun 12 2020
From Gerry Martens, Apr 06 2024: (Start)
a(n) = Imaginary part of -(1/2)*(2*n*i-1)^3.
a(n) = -4*(1/4 + n^2)^(3/2)*sin(3*arctan(2*n)). (End)
MAPLE
a := n -> (4*n^2-3)*n; # Peter Luschny, Jul 12 2009
MATHEMATICA
lst={}; Do[AppendTo[lst, ChebyshevT[3, n]], {n, 0, 10^2}]; lst
Round[Table[N[Cosh[3 ArcCosh[n]], 100], {n, 0, 20}]] (* Artur Jasinski, Feb 14 2010 *)
CoefficientList[Series[x*(1+22*x+x^2)/(1-x)^4, {x, 0, 40}], x] (* Vincenzo Librandi, Jun 30 2012 *)
LinearRecurrence[{4, -6, 4, -1}, {0, 1, 26, 99}, 40] (* Harvey P. Dale, Apr 02 2015 *)
PROG
(Magma) [ 4*n^3-3*n: n in [0..36] ]; // Klaus Brockhaus, Jan 11 2009
(PARI) a(n) = 4*n^3-3*n \\ Charles R Greathouse IV, Feb 08 2012
(Magma) I:=[0, 1, 26, 99]; [n le 4 select I[n] else 4*Self(n-1)-6*Self(n-2)+4*Self(n-3)-Self(n-4): n in [1..50]]; // Vincenzo Librandi, Jun 30 2012
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
STATUS
approved