[go: up one dir, main page]

login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
Search: a114495 -id:a114495
Displaying 1-4 of 4 results found. page 1
     Sort: relevance | references | number | modified | created      Format: long | short | data
A236918 Triangle read by rows: Catalan triangle of the k-Fibonacci sequence. +10
2
1, 1, 1, 1, 2, 3, 1, 3, 7, 8, 1, 4, 12, 22, 24, 1, 5, 18, 43, 73, 75, 1, 6, 25, 72, 156, 246, 243, 1, 7, 33, 110, 283, 564, 844, 808, 1, 8, 42, 158, 465, 1092, 2046, 2936, 2742, 1, 9, 52, 217, 714, 1906, 4178, 7449, 10334, 9458, 1, 10, 63, 288, 1043, 3096, 7670, 15904, 27231, 36736, 33062 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
1,5
COMMENTS
Reversal of the Riordan array (f(x), x*f(x)) where f(x) is the g.f. of A000958. - Philippe Deléham, Feb 10 2014
Row sums are in A109262. - Philippe Deléham, Feb 10 2014
LINKS
Sergio Falcon, Catalan transform of the K-Fibonacci sequence, Commun. Korean Math. Soc. 28 (2013), No. 4, pp. 827-832.
FORMULA
T(n, k) = coefficient of [x^k]( p(n, x) ), where p(n, x) = Sum_{j=0..n} (j/(2*n-j))*binomial(2*n-j, n-j)*x^(n-1)*Fibonacci(j, 1/x) with p(0, x) = 1 and Fibonacci(n, x) are the Fibonacci polynomials. - G. C. Greubel, Jun 14 2022
EXAMPLE
Triangle begins:
1;
1, 1;
1, 2, 3;
1, 3, 7, 8;
1, 4, 12, 22, 24;
1, 5, 18, 43, 73, 75;
1, 6, 25, 72, 156, 246, 243;
1, 7, 33, 110, 283, 564, 844, 808;
1, 8, 42, 158, 465, 1092, 2046, 2936, 2742;
1, 9, 52, 217, 714, 1906, 4178, 7449, 10334, 9458;
1, 10, 63, 288, 1043, 3096, 7670, 15904, 27231, 36736, 33062;
... - Extended by Philippe Deléham, Feb 10 2014
MATHEMATICA
P[n_, x_]:= P[n, x]= If[n==0, 1, Sum[(j/(2*n-j))*Binomial[2*n-j, n-j]*Fibonacci[j, 1/x] *x^(n-1), {j, 0, n}]];
T[n_, k_]:= Coefficient[P[n, x], x, k];
Table[T[n, k], {n, 10}, {k, 0, n-1}]//Flatten (* G. C. Greubel, Jun 14 2022 *)
PROG
(SageMath)
def f(n, x): return sum( binomial(n-j-1, j)*x^(n-2*j-1) for j in (0..(n-1)//2) )
def p(n, x):
if (n==0): return 1
else: return sum( (j/(2*n-j))*binomial(2*n-j, n-j)*x^(n-1)*f(j, 1/x) for j in (0..n) )
def A236918(n, k): return ( p(n, x) ).series(x, n+1).list()[k]
flatten([[A236918(n, k) for k in (0..n-1)] for n in (1..12)]) # G. C. Greubel, Jun 14 2022
CROSSREFS
Diagonals give A000958, A114495.
Cf. A109262 (row sums).
KEYWORD
nonn,tabl
AUTHOR
N. J. A. Sloane, Feb 09 2014
EXTENSIONS
More terms from Philippe Deléham, Feb 09 2014
STATUS
approved
A114494 Triangle read by rows: T(n,k) is number of hill-free Dyck paths of semilength n and having k returns to the x-axis. (A Dyck path is said to be hill-free if it has no peaks at level 1.) +10
1
0, 1, 2, 5, 1, 14, 4, 42, 14, 1, 132, 48, 6, 429, 165, 27, 1, 1430, 572, 110, 8, 4862, 2002, 429, 44, 1, 16796, 7072, 1638, 208, 10, 58786, 25194, 6188, 910, 65, 1, 208012, 90440, 23256, 3808, 350, 12, 742900, 326876, 87210, 15504, 1700, 90, 1, 2674440, 1188640 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,3
COMMENTS
Row 1 contains one term; row n contains floor(n/2) terms (n >= 2). Row sums are the Fine numbers (A000957). Column 1 yields the Catalan numbers (n >= 2). Sum_{k=1..floor(n/2)} k*T(n,k) = A114495(n).
From Colin Defant, Sep 15 2018: (Start)
Let theta_{n-1,k-1} be the permutation k(k-1)...1(k+1)(k+2)...(n-1) obtained by concatenating the decreasing string k...1 with the increasing string (k+1)...(n-1). T(n,k) is the number of preimages of theta_{n-1,k-1} under West's stack-sorting map.
If pi is any permutation of [n-1] with exactly k-1 descents, then |s^{-1}(pi)| <= T(n,k), where s denotes West's stack-sorting map. (End)
LINKS
C. Defant, Preimages under the stack-sorting algorithm, arXiv:1511.05681 [math.CO], 2015-2018.
C. Defant, Preimages under the stack-sorting algorithm, Graphs Combin., 33 (2017), 103-122.
C. Defant, Stack-sorting preimages of permutation classes, arXiv:1809.03123 [math.CO], 2018.
E. Deutsch and L. Shapiro, A survey of the Fine numbers, Discrete Math., 241 (2001), 241-265.
FORMULA
T(n, k) = (k/(n-k))*binomial(2*n-2*k, n-2*k) (1 <= k <= floor(n/2)).
G.f.: 1/(1-tz^2*C^2)-1, where C=(1-sqrt(1-4z))/(2z) is the Catalan function.
EXAMPLE
T(5,2)=4 because we have UUD(D)UUDUD(D), UUD(D)UUUDD(D), UUDUD(D)UUD(D) and UUUDD(D)UUD(D), where U=(1,1), D=(1,-1) (returns to the axis are shown between parentheses).
Triangle starts:
0;
1;
2;
5, 1;
14, 4;
42, 14, 1;
132, 48, 6;
429, 165, 27, 1;
MAPLE
T:=proc(n, k) if k<=floor(n/2) then k*binomial(2*n-2*k, n-2*k)/(n-k) else 0 fi end: 0; for n from 2 to 15 do seq(T(n, k), k=1..floor(n/2)) od; # yields sequence in triangular form
MATHEMATICA
Join[{0}, t[n_, k_]:=(k/(n - k)) Binomial [2 n - 2 k, n - 2 k]; Table[t[n, k], {n, 1, 20}, {k, n/2}]//Flatten] (* Vincenzo Librandi, Sep 15 2018 *)
PROG
(Magma) /* except 0 as triangle */ [[(k/(n-k))*Binomial(2*n-2*k, n-2*k): k in [1..n div 2]]: n in [2.. 15]]; // Vincenzo Librandi, Sep 15 2018 *)
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Emeric Deutsch, Dec 01 2005
STATUS
approved
A114626 Triangle read by rows: T(n,k) is the number of hill-free Dyck paths of semilength n and having k peaks at level 2; 0<= k<=n-1, n>=2 (a Dyck path is said to be hill-free if it has no peaks at level 1). +10
1
0, 1, 1, 0, 1, 2, 2, 1, 1, 6, 6, 3, 2, 1, 19, 17, 12, 5, 3, 1, 61, 56, 36, 20, 8, 4, 1, 202, 185, 120, 66, 31, 12, 5, 1, 683, 624, 409, 224, 110, 46, 17, 6, 1, 2348, 2144, 1408, 784, 385, 172, 66, 23, 7, 1, 8184, 7468, 4920, 2760, 1380, 624, 257, 92, 30, 8, 1, 28855, 26317 (list; graph; refs; listen; history; text; internal format)
OFFSET
2,6
COMMENTS
Row n has n terms (n>=2). Row sums yield the Fine numbers (A000957). T(n,0)=A114627(n-3). Sum(kT(n,k),k=0..n-1)=A114495(n).
LINKS
FORMULA
G.f.=(1+z-tz-zC)/[1+z+z^2-tz-tz^2-z(1+z)C], where C=[1-sqrt(1-4z)]/(2z) is the Catalan function.
EXAMPLE
T(5,2)=3 because we have U(UD)(UD)UUDDD, UUUDD(UD)(UD)D and U(UD)UUDD(UD)D, where U=(1,1), D=(1,-1) (the peaks at level 2 are shown between parentheses).
Triangle begins:
0,1;
1,0,1;
2,2,1,1;
6,6,3,2,1;
19,17,12,5,3,1;
MAPLE
C:=(1-sqrt(1-4*z))/2/z: G:=(1+z-t*z-z*C)/(1+z+z^2-t*z-t*z^2-z*(1+z)*C): Gser:=simplify(series(G, z=0, 15)): for n from 2 to 12 do P[n]:=coeff(Gser, z^n) od: for n from 2 to 12 do seq(coeff(t*P[n], t^j), j=1..n) od; # yields sequence in triangular form
CROSSREFS
KEYWORD
nonn,tabf
AUTHOR
Emeric Deutsch, Dec 18 2005
STATUS
approved
A237596 Convolution triangle of A000958(n+1). +10
1
1, 1, 1, 3, 2, 1, 8, 7, 3, 1, 24, 22, 12, 4, 1, 75, 73, 43, 18, 5, 1, 243, 246, 156, 72, 25, 6, 1, 808, 844, 564, 283, 110, 33, 7, 1, 2742, 2936, 2046, 1092, 465, 158, 42, 8, 1, 9458, 10334, 7449, 4178, 1906, 714, 217, 52, 9, 1, 33062, 36736, 27231, 15904, 7670, 3096, 1043, 288, 63, 10, 1 (list; table; graph; refs; listen; history; text; internal format)
OFFSET
0,4
COMMENTS
Riordan array (f(x)/x, f(x)) where f(x) is the g.f. of A000958.
Reversal of A236918.
Row sums are A109262(n+1).
Diagonal sums are A033297(n+2).
LINKS
Sergio Falcon, Catalan transform of the K-Fibonacci sequence, Commun. Korean Math. Soc. 28 (2013), No. 4, pp. 827-832.
FORMULA
G.f.: for the column k-1: ((1-sqrt((1-4*x))^k/(1+sqrt(1-4*x) + 2*x)^k)/x.
Sum_{k=0..n} T(n,k) = A109262(n+1).
From G. C. Greubel, Jun 14 2022: (Start)
T(n, k) = coefficient of [x^k]( p(n+1, x) ), where p(n, x) = Sum_{j=0..n} (j/(2*n-j))*binomial(2*n-j, n-j)*Fibonacci(j, x) with p(0, x) = 1 and Fibonacci(n, x) are the Fibonacci polynomials.
T(n, k) = A236918(n, n-k). (End)
EXAMPLE
Triangle begins:
1;
1, 1;
3, 2, 1;
8, 7, 3, 1;
24, 22, 12, 4, 1;
75, 73, 43, 18, 5, 1;
243, 246, 156, 72, 25, 6, 1;
808, 844, 564, 283, 110, 33, 7, 1;
...
MAPLE
# Uses function PMatrix from A357368. Adds column 1, 0, 0, 0, ... to the left.
PMatrix(10, n -> A000958(n)); # Peter Luschny, Oct 19 2022
MATHEMATICA
P[n_, x_]:= P[n, x]= If[n==0, 1, Sum[(j/(2*n-j))*Binomial[2*n-j, n-j]*Fibonacci[j, x], {j, 0, n}]];
T[n_, k_] := Coefficient[P[n+1, x], x, k];
Table[T[n, k], {n, 0, 13}, {k, 0, n}]//Flatten (* G. C. Greubel, Jun 14 2022 *)
PROG
(SageMath)
def f(n, x): return sum( binomial(n-j-1, j)*x^(n-2*j-1) for j in (0..(n-1)//2) )
def p(n, x):
if (n==0): return 1
else: return sum( (j/(2*n-j))*binomial(2*n-j, n-j)*f(j, x) for j in (0..n) )
def A237596(n, k): return ( p(n+1, x) ).series(x, n+1).list()[k]
flatten([[A237596(n, k) for k in (0..n)] for n in (0..12)]) # G. C. Greubel, Jun 14 2022
CROSSREFS
Columns give A000958, A114495.
Cf. A033297 (diagonal sums), A109262 (row sums), A236918 (row reversal).
KEYWORD
nonn,tabl
AUTHOR
Philippe Deléham, Feb 09 2014
STATUS
approved
page 1

Search completed in 0.009 seconds

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 30 15:13 EDT 2024. Contains 375545 sequences. (Running on oeis4.)