[go: up one dir, main page]

login
Search: a110819 -id:a110819
     Sort: relevance | references | number | modified | created      Format: long | short | data
Numbers k such that k and phi(k) have the same prime factors.
+10
22
1, 4, 8, 16, 18, 32, 36, 50, 54, 64, 72, 100, 108, 128, 144, 162, 200, 216, 250, 256, 288, 294, 324, 400, 432, 450, 486, 500, 512, 576, 578, 588, 648, 800, 864, 882, 900, 972, 1000, 1014, 1024, 1152, 1156, 1176, 1210, 1250, 1296, 1350, 1458, 1600, 1728, 1764
OFFSET
1,2
COMMENTS
Contains products of suitable powers of 2 and Fermat primes. For x = 2^u*3^w, phi(x) = 2^u*3^(w-1) with suitable exponents. Analogous constructions are possible with {2,3,7} prime divisors, etc.
From Ivan Neretin, Mar 19 2015: (Start)
Also, numbers k that meet the following criteria for every prime p dividing k:
1. All prime divisors of p-1 must also divide k;
2. If k has no prime divisors of the form m*p+1, and k is divisible by p, then k must be divisible by p^2.
Also, numbers k for which {k, phi(k), phi(phi(k))} is a geometric progression.
(End)
All terms > 1 are even. An even number k is in the sequence iff 2*k is in the sequence. - Robert Israel, Mar 19 2015
For n > 1, the largest prime factor of a(n) has multiplicity >= 2. For all prime factors more than half of the largest prime factor of a(n), the multiplicity differs from 1.
If k = p1^a1 * p2^a2 * ... * pm^am is in the sequence, then so is p1^b1 * p2^b2 * ... * pm^bm for 1 <= i <= m and prime pi and bi >= ai.
If m * p^2 is not in the sequence, for a prime p and some m > 0, then neither is m * p^3. - David A. Corneth, Mar 22 2015
A027748(a(n),j) = A027748(A000010(a(n)),j) for j=1..A001221(a(n)); also numbers k such that k and phi(k) have the same squarefree kernel: A007947(a(n)) = A007947(A000010(a(n))). - Reinhard Zumkeller, Jun 01 2015
Pollack and Pomerance call these numbers "phi-perfect numbers". - Amiram Eldar, Jun 02 2020
LINKS
David A. Corneth, Table of n, a(n) for n = 1..117561 (terms <= 10^11; first 10000 terms from T. D. Noe)
Paul Pollack and Carl Pomerance, Prime-Perfect Numbers, INTEGERS, Electronic J. of Combinatorial Number Theory, Vol. 12a, Paper A14, 2012.
EXAMPLE
k = 578 = 2*17*17, phi(578) = 272 = 2*2*2*2*17 with 2 and 17 prime factors, so 578 is a term.
k = 588 = 2*2*3*7*7, phi(588) = 168 = 2*2*2*3*7, so 588 is a term.
k = 264196 = 2*2*257*257, phi(264196) = 512*257 = 131584, so 264196 is a term.
MAPLE
select(numtheory:-factorset = numtheory:-factorset @ numtheory:-phi,
[1, 2*i $ i=1..2000]); # Robert Israel, Mar 19 2015
isA055744 := proc(n)
nfs := numtheory[factorset](n) ;
phinfs := numtheory[factorset](numtheory[phi](n)) ;
if nfs = phinfs then
true;
else
false;
end if;
end proc:
A055744 := proc(n)
if n = 1 then
1;
else
for a from procname(n-1)+1 do
if isA055744(a) then
return a;
end if;
end do:
end if;
end proc: # R. J. Mathar, Sep 23 2016
MATHEMATICA
Select[Range@ 1800,
First /@ FactorInteger@ # == First /@ FactorInteger@ EulerPhi@ # &] (* Michael De Vlieger, Mar 21 2015 *)
PROG
(PARI) is(n)=factor(n)[, 1]==factor(eulerphi(n))[, 1] \\ Charles R Greathouse IV, Oct 31 2011
(PARI) is(n)=my(f=factor(n)); f[, 1]==factor(eulerphi(f))[, 1] \\ Charles R Greathouse IV, May 26 2015
(Haskell)
a055744 n = a055744_list !! (n-1)
a055744_list = 1 : filter f [2..] where
f x = all ((== 0) . mod x) (concatMap (a027748_row . subtract 1) ps) &&
all ((== 0) . mod (a173557 x))
(map fst $ filter ((== 1) . snd) $ zip ps $ a124010_row x)
where ps = a027748_row x
-- Reinhard Zumkeller, Jun 01 2015
CROSSREFS
Intersection of A073539 and A151999. - Amiram Eldar, Jun 02 2020
Cf. A007947, A027748, A055742, A173557, A256248, subsequence of A124240.
KEYWORD
nonn
AUTHOR
Labos Elemer, Jul 11 2000
EXTENSIONS
Corrected and extended by James A. Sellers, Jul 11 2000
STATUS
approved
Numbers k such that the set of prime divisors of k is equal to the set of prime divisors of sigma(k).
+10
15
1, 6, 28, 120, 270, 496, 672, 1080, 1638, 1782, 3780, 8128, 18600, 20580, 24948, 26208, 30240, 32640, 32760, 35640, 41850, 44226, 55860, 66960, 164640, 167400, 185220, 199584, 273000, 293760, 401310, 441936, 446880, 502740, 523776, 614250, 707616, 802620, 819000
OFFSET
1,2
COMMENTS
Multiplicities are ignored.
All even perfect numbers are in the sequence. It seems that 1 is the only odd term of the sequence. - Farideh Firoozbakht, Jul 01 2008
sigma() is the multiplicative sum-of-divisors function. - Walter Nissen, Dec 16 2009
Pollack and Pomerance call these "prime-perfect numbers" and show that there are << x^(1/3+e) of these up to x for any e > 0. - Charles R Greathouse IV, May 09 2013
Except for unity for the obvious reason, the primitive terms are the perfect numbers (A000396). - Robert G. Wilson v, Feb 19 2019
If an odd term > 1 exists, it is larger than 5*10^23. - Giovanni Resta, Jun 02 2020
REFERENCES
R. K. Guy, Unsolved Problems in Number Theory, B19.
LINKS
Donovan Johnson, Table of n, a(n) for n = 1..500 (first 100 terms from T. D. Noe)
Paul Pollack and Carl Pomerance, Prime-Perfect Numbers, INTEGERS, Electronic J. of Combinatorial Number Theory, Vol. 12a, Paper A14, 2012.
EXAMPLE
273000 = 2^3*3*5^3*7*13 and sigma(273000) = 1048320 = 2^8*3^2*5*7*13 so 273000 is in the sequence.
MATHEMATICA
Select[Range[1000000], Transpose[FactorInteger[#]][[1]] == Transpose[FactorInteger[DivisorSigma[1, #]]][[1]] &] (* T. D. Noe, Dec 08 2012 *)
PROG
(PARI) a(n) = {for (i=1, n, fn = factor(i); fs = factor(sigma(i)); if (fn[, 1] == fs[, 1], print1(i, ", ")); ); } \\ Michel Marcus, Nov 18 2012
(PARI) is(n)=my(f=factor(n), fs=[], t); for(i=1, #f[, 1], t=factor((f[i, 1]^(f[i, 2]+1)-1)/(f[i, 1]-1))[, 1]; fs=vecsort(concat(fs, t~), , 8); if(#setminus(fs, f[, 1]~), return(0))); fs==f[, 1]~ \\ Charles R Greathouse IV, May 09 2013
(GAP) Filtered([1..1000000], n->Set(Factors(n))=Set(Factors(Sigma(n)))); # Muniru A Asiru, Feb 21 2019
CROSSREFS
Intersection of A105402 and A175200. - Amiram Eldar, Jun 02 2020
KEYWORD
nonn
AUTHOR
EXTENSIONS
Edited by N. J. A. Sloane, Jul 12 2008 at the suggestion of R. J. Mathar
STATUS
approved
Numbers n such that n and its digital reversal have the same prime divisors.
+10
14
1, 2, 3, 4, 5, 6, 7, 8, 9, 11, 22, 33, 44, 55, 66, 77, 88, 99, 101, 111, 121, 131, 141, 151, 161, 171, 181, 191, 202, 212, 222, 232, 242, 252, 262, 272, 282, 292, 303, 313, 323, 333, 343, 353, 363, 373, 383, 393, 404, 414, 424, 434, 444, 454, 464, 474, 484, 494
OFFSET
1,2
COMMENTS
Contains the palindromes A002113 as a subsequence. 1089 and 2178 are the first two non-palindromic terms. Any number of concatenations of 1089 with itself or 2178 with itself gives a term; e.g. 10891089 etc. Hence there are infinitely many non-palindromic terms. They are given in A110819.
EXAMPLE
1089 = 3^2*11^2, 9801 = 3^4*11^2.
MATHEMATICA
Select[ Range[ 500], First /@ FactorInteger[ # ] == First /@ FactorInteger[ FromDigits[ Reverse[ IntegerDigits[ # ]]]] &] (* Robert G. Wilson v *)
PROG
(PARI) is_A110751(n)={ local(r=eval(concat(vecextract(Vec(Str(n)), "-1..1")))); r==n || factor(r)[, 1]==factor(n)[, 1] } /* M. F. Hasler */
(Python)
from sympy import primefactors
A110751 = [n for n in range(1, 10**5) if primefactors(n) == primefactors(int(str(n)[::-1]))] # Chai Wah Wu, Aug 14 2014
CROSSREFS
KEYWORD
base,easy,nonn
AUTHOR
Amarnath Murthy, Aug 11 2005
EXTENSIONS
Edited and extended by Robert G. Wilson v, Sep 21 2005
Corrected comment, added PARI code. - M. F. Hasler, Nov 16 2008
STATUS
approved
Numbers n such that the set of prime divisors of phi(n) is equal to the set of prime divisors of sigma(n).
+10
9
1, 3, 14, 35, 42, 70, 105, 119, 209, 210, 238, 248, 297, 357, 418, 477, 594, 595, 616, 627, 714, 744, 954, 1045, 1178, 1190, 1240, 1254, 1463, 1485, 1672, 1674, 1736, 1785, 1848, 1863, 2079, 2090, 2376, 2385, 2540, 2728, 2926, 2945, 2970, 3080, 3135, 3302
OFFSET
1,2
COMMENTS
The multiplicities of the divisors are to be ignored.
Is it true that 1 is the only term in both this sequence and A055744? - Farideh Firoozbakht, Jul 01 2008. Answer from Luke Pebody, Jul 10 2008: No! In fact the numbers 103654150315463023813006470 and 6534150553412193640795377701190 are in both sequences.
LINKS
Prime Puzzles, Puzzle 451
EXAMPLE
n=418=2*11*19: sigma(418)=720, phi[418]=180, common prime factor set ={2,3,5}
k = 477 = 3*3*53: sigma(477) = 702 = 2*3*3*3*13; phi(477) = 312 = 2*2*2*3*13; common factor set: {2,3,13}.
phi(89999)=66528=2^5*3^3*7*11 and sigma(89999)=118272=2^9*3*7*11 so 89999 is in the sequence.
MATHEMATICA
ffi[x_] := Flatten[FactorInteger[x]] lf[x_] := Length[FactorInteger[x]] ba[x_] := Table[Part[ffi[x], 2*w-1], {w, 1, lf[x]}] Do[s=ba[DivisorSigma[1, n]]; s1=ba[EulerPhi[n]]; If[Equal[s, s1], k=k+1; Print[n]], {n, 1, 10000}]
PROG
(PARI) is(n)=factor(eulerphi(n=factor(n)))[, 1]==factor(sigma(n))[, 1] \\ Charles R Greathouse IV, Nov 27 2013
KEYWORD
nonn
AUTHOR
Labos Elemer, Mar 26 2003
EXTENSIONS
Edited by N. J. A. Sloane, Jul 11 2008 at the suggestion of Farideh Firoozbakht
STATUS
approved
Nonpalindromic n such that the factorizations of n and its digital reverse differ only for the exponents order.
+10
2
277816, 618772, 14339143, 34193341, 1125355221, 1225535211, 2613391326, 6231933162, 26157457326, 62375475162, 100504263021, 102407325111, 111523704201, 120362405001, 144326261443, 275603902756, 277816277816, 344162623441, 392739273927, 392875758639
OFFSET
1,1
COMMENTS
Subset of A110751 and A110819.
LINKS
Giovanni Resta, Table of n, a(n) for n = 1..34 (terms < 2*10^12)
EXAMPLE
277816 and its reverse 618772 are in the sequence since 277816 = 2^3*7*11^2*41 and 618772 = 2^2*7^3*11*41 have the same prime divisors and the same exponents (1,1,2,3).
MATHEMATICA
Do[fn = FactorInteger@n; fr = FactorInteger@ FromDigits@ Reverse@ IntegerDigits@n; If[fn != fr && First /@ fn == First /@ fr && Sort[Last /@ fn] == Sort[Last /@ fr], Print[n]], {n, 15*10^6}]
PROG
(Python)
from sympy import primefactors, factorint
A224252 = [n for n in range(1, 10**6) if n != int(str(n)[::-1]) and primefactors(n) == primefactors(int(str(n)[::-1])) and sorted(factorint(n).values()) == sorted(factorint(int(str(n)[::-1])).values())] # Chai Wah Wu, Aug 21 2014
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Giovanni Resta, Apr 02 2013
STATUS
approved
Least non-palindromic number k such that k and its digital reversal both have exactly n prime divisors.
+10
1
13, 12, 132, 1518, 15015, 204204, 10444434, 241879638, 20340535215, 242194868916, 136969856585562, 2400532020354468, 484576809394483806, 200939345091539746692
OFFSET
1,1
COMMENTS
This sequence does not allow ending in 0, else a(8) = 208888680, a(11) = 64635504163230 and a(13) = 477566276048801940. - Michael S. Branicky, Feb 14 2023
FORMULA
a(n) >= A239696(n). - Daniel Suteu, Feb 18 2023
EXAMPLE
a(1)=13=13 since 31=31,
a(2)=12=2^2*3 since 21=3*7,
a(3)=132=2^2*3*11 since 231=3*7*11,
...
a(7)=10444434=2*3*7*11*13*37*47 since 43444401=3*7*11*13*17*23*37,
a(8)=241879638=2*3*7*11*13*17*23*103 since 836978142=2*3*7*11*13*23*73*83.
MATHEMATICA
r[n_] := FromDigits[ Reverse[ IntegerDigits[ n]]]; f[n_] := Block[{k = r[n], len = Length[ FactorInteger[n]]}, If[k != n && len == Length[ FactorInteger[ r[n]]], len, 0]]; t = Table[0, {10}]; Do[ a = f[n]; If[a > 0 && t[[a]] == 0, t[[a]] = n; Print[{a, n}]], {n, 107}]; t
PROG
(PARI)
generate(A, B, n) = A=max(A, vecprod(primes(n))); (f(m, p, j) = my(list=List()); forprime(q=p, sqrtnint(B\m, j), if(q==5 && m%2==0, next); my(v=m*q); while(v <= B, if(j==1, my(r=fromdigits(Vecrev(digits(v)))); if(v>=A && r != v && omega(r) == n, listput(list, v)), if(v*(q+1) <= B, list=concat(list, f(v, q+1, j-1)))); v *= q)); list); vecsort(Vec(f(1, 2, n)));
a(n) = my(x=vecprod(primes(n)), y=2*x); while(1, my(v=generate(x, y, n)); if(#v >= 1, return(v[1])); x=y+1; y=2*x); \\ Daniel Suteu, Feb 18 2023
CROSSREFS
KEYWORD
base,hard,nonn
AUTHOR
EXTENSIONS
Edited and extended by Giovanni Resta, Jan 16 2006
a(9)-a(10) from Giovanni Resta, Feb 23 2014
a(11)-a(13) from Michael S. Branicky, Feb 14 2023
a(14) from Daniel Suteu, Feb 18 2023
STATUS
approved
Numbers m such that the set of distinct prime divisors of m is equal to the set of distinct prime divisors of the arithmetic derivative m'.
+10
1
1, 4, 16, 27, 108, 144, 256, 432, 500, 784, 972, 1323, 1728, 2700, 2916, 3125, 3456, 5292, 8788, 11664, 12500, 13068, 15376, 16875, 19683, 20736, 23328, 25000, 27648, 28125, 31212, 34300, 47916, 54000, 57132, 65536, 72000, 78732, 97556, 102400, 103788, 104544
OFFSET
1,2
COMMENTS
A027748(n,k) = A027748(A003415(n),k) for k=1..A001221(n). - Reinhard Zumkeller, Jan 16 2013
A051674 is a subsequence of this sequence.
LINKS
Paolo P. Lava and Donovan Johnson, Table of n, a(n) for n = 1..500 (first 100 terms from Paolo P. Lava)
EXAMPLE
n = 1728 = 2^6*3^3, n' = 6912 = 2^8*3^3 have the same prime factors 2 and 3.
MAPLE
with(numtheory);
A201009:=proc(q)
local a, b, k, n;
for n from 1 to q do
a:=ifactors(n)[2]; b:=ifactors(n*add(op(2, p)/op(1, p), p=ifactors(n)[2]))[2];
if nops(a)=nops(b) then
if product(a[k][1], k=1..nops(a))=product(b[k][1], k=1..nops(a)) then print(n);
fi; fi; od; end:
A201009(100000); # Paolo P. Lava, Jan 09 2013
PROG
(Haskell)
a201009 = a201009_list
a201009_list = 1 : filter
(\x -> a027748_row x == a027748_row (a003415 x)) [2..]
-- Reinhard Zumkeller, Jan 16 2013
(Python)
from sympy import primefactors, factorint
A201009 = [n for n in range(1, 10**5) if primefactors(n) == primefactors(sum([int(n*e/p) for p, e in factorint(n).items()]) if n > 1 else 0)] # Chai Wah Wu, Aug 21 2014
KEYWORD
nonn
AUTHOR
Paolo P. Lava, Jan 09 2013
STATUS
approved
The smallest nonpalindromic number in base n that shares the same prime divisors as its digit reversal in base n.
+10
1
135, 32, 8, 8, 245, 12, 16, 16, 1089, 15, 72, 24, 468, 28, 32, 32, 108, 24, 48, 40, 98, 44, 144, 39, 1800, 52, 392, 35, 27869, 60, 64, 64, 45, 68, 216, 72, 162, 76, 400, 48, 75809, 48, 968, 88, 4590, 92, 288, 60, 238, 100, 1352, 104, 242, 63, 120, 112, 143370, 72, 1800, 120, 640, 124, 105
OFFSET
2,1
COMMENTS
The largest value in the first 500 terms is a(478) = 109443357.
LINKS
EXAMPLE
a(2) = 135 as 135 = 3^3 * 5 = 10000111_2 whose digit reversal is 11100001_2 = 225 = 3^2 * 5^2, both of which have 3 and 5 as prime divisors.
a(10) = 1089 as 1089 = 3^2 * 11^2 whose digit reversal is 9801 = 3^4 * 11^2, both of which have 3 and 11 as prime divisors. See also A110819.
a(14) = 468 as 468 = 2^2 * 3^2 * 13 = 256_14 whose digit reversal is 652_14 = 1248 = 2^5 * 3 * 13, both of which have 2, 3, and 13 as prime divisors.
CROSSREFS
KEYWORD
nonn,base
AUTHOR
Scott R. Shannon, May 03 2024
STATUS
approved

Search completed in 0.014 seconds