Displaying 1-8 of 8 results found.
page
1
Square array read by ascending antidiagonals, T(n,k) = Sum_{j=0..k} n^j*(C(k-j,j) mod 2).
+0
1
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 1, 4, 1, 3, 1, 1, 1, 5, 1, 7, 2, 1, 1, 1, 6, 1, 13, 5, 3, 1, 1, 1, 7, 1, 21, 10, 11, 1, 1, 1, 1, 8, 1, 31, 17, 31, 1, 4, 1, 1, 1, 9, 1, 43, 26, 69, 1, 23, 3, 1, 1, 1, 10, 1, 57, 37, 131, 1, 94, 21, 5, 1, 1, 1, 11
EXAMPLE
[2] 1, 1, 3, 1, 7, 5, 11, 1, 23, 21, 59, ... [ A101624]
a(n) = (3*a(n-1)) XOR a(n-2).
+0
1
0, 1, 3, 8, 27, 89, 272, 873, 2859, 8936, 25491, 67665, 228192, 752241, 2167859, 6833896, 18464907, 52758345, 142005584, 440498361, 1186119547, 3461957320, 9357060899, 26968655777, 72945663424, 226371206881, 613739200867, 1752444795592, 4702791627067, 14623717009785
CROSSREFS
Cf. A101624: a(n) = (2*a(n-2)) XOR a(n-1), a(0)=0, a(1)=1.
a(n) = a(n-1) XOR (a(n-2)*3).
+0
2
0, 1, 1, 2, 1, 7, 4, 17, 29, 46, 121, 243, 408, 833, 1929, 3658, 6353, 12815, 30844, 61009, 100133, 216534, 514233, 930107, 1686288, 3352737, 8264081, 15163506, 27077825, 53153175, 133991380, 243114769, 428343405, 854649182, 2120804377, 3870970883, 6937439304
CROSSREFS
Cf. A101624: a(n) = a(n-1) XOR (a(n-2)*2).
Modular binomial transform of 10^n.
+0
1
1, 1, 11, 1, 111, 101, 1011, 1, 10111, 10101, 111011, 10001, 1100111, 1000101, 10001011, 1, 100010111, 100010101, 1100111011, 100010001, 11101100111, 10101000101, 101110001011, 100000001, 1011000010111, 1010000010101
Multiplies by 2 and shifts right under the XOR BINOMIAL transform ( A099901).
+0
5
1, 3, 7, 11, 23, 59, 103, 139, 279, 827, 1895, 2955, 5655, 14395, 24679, 32907, 65815, 197435, 460647, 723851, 1512983, 3881019, 6774887, 9142411, 18219287, 54002491, 123733863, 192940939, 369104407, 939538491, 1610637415, 2147516555
A bisection of the Stern-Jacobsthal numbers.
+0
5
0, 1, 1, 5, 1, 21, 17, 69, 1, 277, 273, 1349, 257, 5141, 4113, 16453, 1, 65813, 65809, 329029, 65793, 1381397, 1118225, 4538437, 65537, 18088213, 17826065, 88081733, 16777473, 335549461, 268439569, 1073758277, 1, 4295033109, 4295033105
Diagonals of Pascal's triangle mod 2 interpreted as binary numbers.
(Formerly M2252)
+0
5
1, 1, 3, 2, 7, 5, 13, 8, 29, 21, 55, 34, 115, 81, 209, 128, 465, 337, 883, 546, 1847, 1301, 3357, 2056, 7437, 5381, 14087, 8706, 29443, 20737, 53505, 32768, 119041, 86273, 226051, 139778, 472839, 333061, 859405, 526344, 1903901, 1377557, 3606327
Stern's diatomic series (or Stern-Brocot sequence): a(0) = 0, a(1) = 1; for n > 0: a(2*n) = a(n), a(2*n+1) = a(n) + a(n+1).
(Formerly M0141 N0056)
+0
378
0, 1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, 2, 5, 3, 4, 1, 5, 4, 7, 3, 8, 5, 7, 2, 7, 5, 8, 3, 7, 4, 5, 1, 6, 5, 9, 4, 11, 7, 10, 3, 11, 8, 13, 5, 12, 7, 9, 2, 9, 7, 12, 5, 13, 8, 11, 3, 10, 7, 11, 4, 9, 5, 6, 1, 7, 6, 11, 5, 14, 9, 13, 4, 15, 11, 18, 7, 17, 10, 13, 3, 14, 11, 19, 8, 21, 13, 18, 5, 17, 12, 19
CROSSREFS
Cf. A000123, A000360, A001045, A002083, A011655, A020950, A026741, A037227, A046815, A070871, A070872, A071883, A073459, A084091, A101624, A126606, A174980, A174981, A178239, A178568, A212288, A213369, A260443, A277020, A277325, A287729, A287730, A293160.
Search completed in 0.018 seconds
|