[go: up one dir, main page]

login
Search: a101624 -id:a101624
     Sort: relevance | references | number | modified | created      Format: long | short | data
Square array read by ascending antidiagonals, T(n,k) = Sum_{j=0..k} n^j*(C(k-j,j) mod 2).
+0
1
1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 3, 1, 1, 1, 1, 4, 1, 3, 1, 1, 1, 5, 1, 7, 2, 1, 1, 1, 6, 1, 13, 5, 3, 1, 1, 1, 7, 1, 21, 10, 11, 1, 1, 1, 1, 8, 1, 31, 17, 31, 1, 4, 1, 1, 1, 9, 1, 43, 26, 69, 1, 23, 3, 1, 1, 1, 10, 1, 57, 37, 131, 1, 94, 21, 5, 1, 1, 1, 11
EXAMPLE
[2] 1, 1, 3, 1, 7, 5, 11, 1, 23, 21, 59, ... [A101624]
a(n) = (3*a(n-1)) XOR a(n-2).
+0
1
0, 1, 3, 8, 27, 89, 272, 873, 2859, 8936, 25491, 67665, 228192, 752241, 2167859, 6833896, 18464907, 52758345, 142005584, 440498361, 1186119547, 3461957320, 9357060899, 26968655777, 72945663424, 226371206881, 613739200867, 1752444795592, 4702791627067, 14623717009785
CROSSREFS
Cf. A101624: a(n) = (2*a(n-2)) XOR a(n-1), a(0)=0, a(1)=1.
a(n) = a(n-1) XOR (a(n-2)*3).
+0
2
0, 1, 1, 2, 1, 7, 4, 17, 29, 46, 121, 243, 408, 833, 1929, 3658, 6353, 12815, 30844, 61009, 100133, 216534, 514233, 930107, 1686288, 3352737, 8264081, 15163506, 27077825, 53153175, 133991380, 243114769, 428343405, 854649182, 2120804377, 3870970883, 6937439304
CROSSREFS
Cf. A101624: a(n) = a(n-1) XOR (a(n-2)*2).
Modular binomial transform of 10^n.
+0
1
1, 1, 11, 1, 111, 101, 1011, 1, 10111, 10101, 111011, 10001, 1100111, 1000101, 10001011, 1, 100010111, 100010101, 1100111011, 100010001, 11101100111, 10101000101, 101110001011, 100000001, 1011000010111, 1010000010101
COMMENTS
A101624 in binary.
Multiplies by 2 and shifts right under the XOR BINOMIAL transform (A099901).
+0
5
1, 3, 7, 11, 23, 59, 103, 139, 279, 827, 1895, 2955, 5655, 14395, 24679, 32907, 65815, 197435, 460647, 723851, 1512983, 3881019, 6774887, 9142411, 18219287, 54002491, 123733863, 192940939, 369104407, 939538491, 1610637415, 2147516555
COMMENTS
Bisection of A101624. - Paul Barry, May 10 2005
A bisection of the Stern-Jacobsthal numbers.
+0
5
0, 1, 1, 5, 1, 21, 17, 69, 1, 277, 273, 1349, 257, 5141, 4113, 16453, 1, 65813, 65809, 329029, 65793, 1381397, 1118225, 4538437, 65537, 18088213, 17826065, 88081733, 16777473, 335549461, 268439569, 1073758277, 1, 4295033109, 4295033105
FORMULA
a(n) = A101624(2n+1).
Diagonals of Pascal's triangle mod 2 interpreted as binary numbers.
(Formerly M2252)
+0
5
1, 1, 3, 2, 7, 5, 13, 8, 29, 21, 55, 34, 115, 81, 209, 128, 465, 337, 883, 546, 1847, 1301, 3357, 2056, 7437, 5381, 14087, 8706, 29443, 20737, 53505, 32768, 119041, 86273, 226051, 139778, 472839, 333061, 859405, 526344, 1903901, 1377557, 3606327
CROSSREFS
Cf. A011973, A000079, A047999 (Sierpiński), A007318, A101624.
Stern's diatomic series (or Stern-Brocot sequence): a(0) = 0, a(1) = 1; for n > 0: a(2*n) = a(n), a(2*n+1) = a(n) + a(n+1).
(Formerly M0141 N0056)
+0
378
0, 1, 1, 2, 1, 3, 2, 3, 1, 4, 3, 5, 2, 5, 3, 4, 1, 5, 4, 7, 3, 8, 5, 7, 2, 7, 5, 8, 3, 7, 4, 5, 1, 6, 5, 9, 4, 11, 7, 10, 3, 11, 8, 13, 5, 12, 7, 9, 2, 9, 7, 12, 5, 13, 8, 11, 3, 10, 7, 11, 4, 9, 5, 6, 1, 7, 6, 11, 5, 14, 9, 13, 4, 15, 11, 18, 7, 17, 10, 13, 3, 14, 11, 19, 8, 21, 13, 18, 5, 17, 12, 19
FORMULA
a(n) = A001222(A260443(n)) = A000120(A277020(n)). Also a(n) = A000120(A101624(n-1)) for n >= 1. - Antti Karttunen, Nov 05 2016

Search completed in 0.018 seconds