[go: up one dir, main page]

login
A037227
If n = 2^m*k, k odd, then a(n) = 2*m+1.
14
1, 3, 1, 5, 1, 3, 1, 7, 1, 3, 1, 5, 1, 3, 1, 9, 1, 3, 1, 5, 1, 3, 1, 7, 1, 3, 1, 5, 1, 3, 1, 11, 1, 3, 1, 5, 1, 3, 1, 7, 1, 3, 1, 5, 1, 3, 1, 9, 1, 3, 1, 5, 1, 3, 1, 7, 1, 3, 1, 5, 1, 3, 1, 13, 1, 3, 1, 5, 1, 3, 1, 7, 1, 3, 1, 5, 1, 3, 1, 9, 1, 3, 1, 5, 1, 3, 1, 7, 1, 3, 1, 5, 1, 3, 1, 11, 1, 3, 1, 5, 1, 3
OFFSET
1,2
COMMENTS
Take the number of rightmost zeros in the binary expansion of n, double it, and increment it by 1. - Ralf Stephan, Aug 22 2013
Gives the maximum possible number of n X n complex Hermitian matrices with the property that all of their nonzero real linear combinations are nonsingular (see Adams et al. reference). - Nathaniel Johnston, Dec 11 2013
LINKS
J. F. Adams, P. D. Lax, and R. S. Phillips, On matrices whose real linear combinations are nonsingular, Proceedings of the American Mathematical Society, 16:318-322, 1965.
D. B. Shapiro, Problem 10456: Anticommuting Matrices, Amer. Math. Monthly, 105 (1998), 565-566.
FORMULA
a(n) = Sum_{d divides n} (-1)^(d+1)*mu(d)*tau(n/d). Multiplicative with a(p^e) = 2*e+1 if p = 2; 1 if p > 2. - Vladeta Jovovic, Apr 27 2003
a(n) = a(n-1)+(-1)^n*(a(floor(n/2))+1). - Vladeta Jovovic, Apr 27 2003
a(2*n) = a(n) + 2, a(2*n+1) = 1. a(n) = 2*A007814(n) + 1. - Ralf Stephan, Oct 07 2003
a(A005408(n)) = 1; a(A016825(n)) = 3; A017113(a(n)) = 5; A051062(a(n)) = 7. - Reinhard Zumkeller, Jun 30 2012
a((2*n-1)*2^p) = 2*p+1, p >= 0 and n >= 1. - Johannes W. Meijer, Feb 07 2013
From Peter Bala, Feb 07 2016: (Start)
a(n) = ( A002487(n-1) + A002487(n+1) )/A002487(n).
a(n*2^(k+1) + 2^k) = 2*k + 1 for n,k >= 0; thus a(2*n+1) = 1, a(4*n+2) = 3, a(8*n+4) = 5, a(16*n+8) = 7 and so on. Note the square array ( n*2^(k+1) + 2^k - 1 )n, k>=0 is the transpose of A075300.
G.f.: Sum_{n >= 0} (2*n + 1)*x^(2^n)/(1 - x^(2^(n+1))). (End)
a(n) = 2*floor(A002487(n-1)/A002487(n))+1 for n > 1. - I. V. Serov, Jun 15 2017
From Amiram Eldar, Nov 29 2022: (Start)
Dirichlet g.f.: zeta(s)*(2^s+1)/(2^s-1).
Asymptotic mean: Limit_{m->oo} (1/m) * Sum_{k=1..m} a(k) = 3. (End)
MAPLE
nmax:=102: for p from 0 to ceil(simplify(log[2](nmax))) do for n from 1 to ceil(nmax/(p+2)) do a((2*n-1)*2^p):= 2*p+1: od: od: seq(a(n), n=1..nmax); # Johannes W. Meijer, Feb 07 2013
MATHEMATICA
a[n_] := Sum[(-1)^(d+1)*MoebiusMu[d]*DivisorSigma[0, n/d], {d, Divisors[n]}]; Table[a[n], {n, 1, 102}] (* Jean-François Alcover, Dec 31 2012, after Vladeta Jovovic *)
f[n_]:=Module[{z=Last[Split[IntegerDigits[n, 2]]]}, If[Union[z]={0}, 2* Length[ z]+1, 1]]; Array[f, 110] (* Harvey P. Dale, Jun 16 2019, after Ralf Stephan *)
Table[2 IntegerExponent[n, 2] + 1, {n, 120}] (* Vincenzo Librandi, Jun 19 2019 *)
PROG
(Haskell)
a037227 = (+ 1) . (* 2) . a007814 -- Reinhard Zumkeller, Jun 30 2012
(R)
maxrow <- 6 # by choice
a <- 1
for(m in 0:maxrow){
for(k in 0:(2^m-1)) {
a[2^(m+1) +k] <- a[2^m+k]
a[2^(m+1)+2^m+k] <- a[2^m+k]
}
a[2^(m+1) ] <- a[2^(m+1)] + 2
}
a
# Yosu Yurramendi, May 21 2015
(PARI) a(n)=2*valuation(n, 2)+1 \\ Charles R Greathouse IV, May 21 2015
(Magma) [2*Valuation(n, 2)+1: n in [1..120]]; // Vincenzo Librandi, Jun 19 2019
(Python)
def A037227(n): return ((~n & n-1).bit_length()<<1)+1 # Chai Wah Wu, Jul 05 2022
KEYWORD
nonn,easy,nice,mult
EXTENSIONS
More terms from Erich Friedman
STATUS
approved