[go: up one dir, main page]

login
The OEIS is supported by the many generous donors to the OEIS Foundation.

 

Logo
Hints
(Greetings from The On-Line Encyclopedia of Integer Sequences!)
Search: a093178 -id:a093178
Displaying 1-10 of 25 results found. page 1 2 3
     Sort: relevance | references | number | modified | created      Format: long | short | data
A100727 Continued fraction expansion of (1/2) [tan(1) + sec(1)]. +0
0
1, 1, 2, 2, 1, 1, 1, 2, 1, 2, 1, 2, 1, 3, 1, 2, 1, 4, 1, 2, 1, 5, 1, 2, 1, 6, 1, 2, 1, 7, 1, 2, 1, 8, 1, 2, 1, 9, 1, 2, 1, 10, 1, 2, 1, 11, 1, 2, 1, 12, 1, 2, 1, 13, 1, 2, 1, 14, 1, 2, 1, 15, 1, 2, 1, 16, 1, 2, 1, 17, 1, 2, 1, 18, 1, 2, 1, 19, 1, 2, 1, 20, 1, 2, 1, 21, 1, 2, 1, 22, 1, 2, 1, 23, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
Periodic part is ...1,2,1,k,..., for k=2..oo.
LINKS
FORMULA
G.f.: (x^4-x^2-1)*(x^6+x^5+x^4-x^3-x^2-x-1) / ((x-1)^2*(x+1)^2*(x^2+1)^2). - Colin Barker, Jul 16 2013
EXAMPLE
1.704111721167913924209364024428505183278823713737764668609552441...
MATHEMATICA
ContinuedFraction[(Tan[1]+Sec[1])/2, 100] (* Harvey P. Dale, Feb 11 2015 *)
CROSSREFS
KEYWORD
nonn,cofr,easy
AUTHOR
Ralf Stephan, Nov 24 2004
STATUS
approved
A124625 Even numbers sandwiched between 1's. +0
11
1, 0, 1, 2, 1, 4, 1, 6, 1, 8, 1, 10, 1, 12, 1, 14, 1, 16, 1, 18, 1, 20, 1, 22, 1, 24, 1, 26, 1, 28, 1, 30, 1, 32, 1, 34, 1, 36, 1, 38, 1, 40, 1, 42, 1, 44, 1, 46, 1, 48, 1, 50, 1, 52, 1, 54, 1, 56, 1, 58, 1, 60, 1, 62, 1, 64, 1, 66, 1, 68, 1, 70, 1, 72, 1, 74, 1, 76, 1, 78, 1, 80, 1, 82, 1, 84 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,4
COMMENTS
Interleaving of A000012 and A005843.
Created to simplify the definition of A129952.
a(n) = abs(A009531(n-1)).
Starting (1, 2, 1, 4,...): square (1 + x - x^2 - x^3 + x^4 + x^5 - ...) = (1 + 2x - x^2 - 4x^3 + x^4 + 6x^5 - ...).
With a(3) taken as 0, a(n+2) = n^k+1 mod 2*n, n>=1, for any k>=2, also for k=n. - Wolfdieter Lang, Dec 21 2011
Also !(n+2) mod n for n>0 where !n is a subfactorial number (A000166). - Michel Lagneau, Sep 05 2012
Greatest common divisor of n-1 and (n-1) mod 2. - Bruno Berselli, Mar 07 2017
REFERENCES
Murat Sahin and Elif Tan, Conditional (strong) divisibility sequences, Fib. Q., 56 (No. 1, 2018), 18-31.
LINKS
FORMULA
a(n) = 1 for even n, a(n) = n-1 for odd n.
a(2*k) = 1, a(2*k+1) = 2*k.
G.f.: (1 - x^2 + 2*x^3)/((1 - x)^2*(1 + x)^2).
a(n) = (n - (n - 2)*(-1)^n)/2. - Bruno Berselli, May 06 2011
E.g.f.: 1 + x^2*U(0)/2 where U(k)= 1 + 2*x*(k+1)/(2*k + 3 - x*(2*k+3)/(x + 4*(k+2)*(k+1)/U(k+1)) (continued fraction, 3rd kind, 3-step). - Sergei N. Gladkovskii, Oct 20 2012
a(n) = 2*floor(n/2) - (n-1)*((n-1) mod 2). - Wesley Ivan Hurt, Oct 19 2013
a(n) = (n-1)^((1-(-1)^n)/2). - Wesley Ivan Hurt, Mar 21 2015
a(n) = (n-1) - a(a(n-1))*a(n-1), a(0) = 0. - Eli Jaffe, Jun 07 2016
E.g.f.: (x + 1)*cosh(x) - sinh(x). - Ilya Gutkovskiy, Jun 07 2016
a(n) = (-1)^n mod n for n > 0. - Franz Vrabec, Mar 06 2020
a(n) = (n-1)^(n mod 2). - Karl V. Keller, Jr., Aug 01 2020
MAPLE
A124625:=n->(n-(n-2)*(-1)^n)/2; seq(A124625(k), k=0..100); # Wesley Ivan Hurt, Oct 19 2013
MATHEMATICA
Join[{1}, Riffle[2Range[0, 50], 1]] (* Harvey P. Dale, Nov 02 2011 *)
PROG
(PARI) {for(n=0, 85, print1(if(n%2>0, n-1, 1), ", "))}
(Magma) &cat[[1, 2*k]: k in [0..42]];
(Python) print([(n-1)**(n%2) for n in range(0, 86)]) # Karl V. Keller, Jr., Jul 26 2020
CROSSREFS
Cf. A000012 (all 1's), A005843 (even numbers), A009531, A093178, A152271.
KEYWORD
nonn,easy
AUTHOR
N. J. A. Sloane, Jun 13 2007
EXTENSIONS
More terms from Klaus Brockhaus, Jun 16 2007
Edited by N. J. A. Sloane, May 21 2008 at the suggestion of R. J. Mathar
STATUS
approved
A009001 Expansion of e.g.f: (1+x)*cos(x). +0
6
1, 1, -1, -3, 1, 5, -1, -7, 1, 9, -1, -11, 1, 13, -1, -15, 1, 17, -1, -19, 1, 21, -1, -23, 1, 25, -1, -27, 1, 29, -1, -31, 1, 33, -1, -35, 1, 37, -1, -39, 1, 41, -1, -43, 1, 45, -1, -47, 1, 49, -1, -51, 1, 53, -1, -55, 1, 57, -1, -59, 1, 61, -1, -63, 1, 65, -1, -67, 1, 69, -1, -71, 1, 73, -1, -75, 1, 77, -1, -79, 1, 81, -1, -83, 1, 85 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,4
COMMENTS
If signs are ignored, continued fraction for tan(1) (cf. A093178).
LINKS
FORMULA
a(n) = (-1)^(n/2) if n is even, n*(-1)^((n-1)/2) if n is odd.
a(n) = -a(n-2) if n is even, 2*a(n-1) - a(n-2) if n is odd. - Michael Somos, Jan 26 2014
From Henry Bottomley, Oct 19 2001: (Start)
a(n) = (n^n mod (n+1))*(-1)^floor(n/2) for n > 0.
a(n) = (-1)^n*(a(n-2) - a(n-1)) - a(n-3) for n > 2. (End)
G.f.: (1+x+x^2-x^3)/(1+x^2)^2.
E.g.f.: (1+x)*cos(x) = U(0) where U(k) = 1 + x - x^2/((2*k+1)*(2*k+2)) * U(k+1). - Sergei N. Gladkovskii, Oct 17 2012 [Edited by Michael Somos, Jan 26 2014]
From James C. McMahon, Oct 12 2023: (Start)
a(0) = 1; for n > 1,
a(n) = a(n-1) * n if n mod 4 = 1,
a(n-1) - n if n mod 4 = 2,
a(n-1) * n if n mod 4 = 3,
a(n-1) + n if n mod 4 = 4. (End)
EXAMPLE
tan(1) = 1.557407724654902230... = 1 + 1/(1 + 1/(1 + 1/(3 + 1/(1 + ...)))). - Harry J. Smith, Jun 15 2009
G.f. = 1 + x - x^2 - 3*x^3 + x^4 + 5*x^5 - x^6 - 7*x^7 + x^8 + 9*x^9 - x^10 + ...
MAPLE
seq(coeff(series(factorial(n)*(1+x)*cos(x), x, n+1), x, n), n=0..90); # Muniru A Asiru, Jul 21 2018
MATHEMATICA
With[{nn=90}, CoefficientList[Series[(1+x)Cos[x], {x, 0, nn}], x]Range[0, nn]!] (* Harvey P. Dale, Jul 15 2012 *)
LinearRecurrence[{0, -2, 0, -1}, {1, 1, -1, -3}, 100] (* Jean-François Alcover, Feb 21 2020 *)
FoldList[If[Mod[#2, 4]==1, #1*#2, If[Mod[#2, 4]==2, #1-#2, If[Mod[#2, 4] ==3, #1*#2, #1+#2]]]&, 1, Range[1, 85]] (* James C. McMahon, Oct 12 2023 *)
PROG
(PARI) {a(n) = (-1)^(n\2) * if( n%2, n, 1)} /* Michael Somos, Oct 16 2006 */
(PARI) { allocatemem(932245000); default(realprecision, 79000); x=contfrac(tan(1)); for (n=0, 20000, write("b009001.txt", n, " ", (-1)^(n\2)*x[n+1])); } \\ Harry J. Smith, Jun 15 2009
(Magma) m:=50; R<x>:=PowerSeriesRing(Rationals(), m); b:=Coefficients(R!((1+x)*Cos(x))); [Factorial(n-1)*b[n]: n in [1..m]]; // G. C. Greubel, Jul 21 2018
CROSSREFS
Cf. A009531, A049471 (decimal expansion of tan(1)).
KEYWORD
sign,easy,nice
AUTHOR
EXTENSIONS
Formula corrected by Olivier Gérard, Mar 15 1997
Definition clarified by Harvey P. Dale, Jul 15 2012
STATUS
approved
A226725 Denominator of the median of {1, 1/2, 1/3, ..., 1/n}. +0
2
1, 4, 2, 12, 3, 24, 4, 40, 5, 60, 6, 84, 7, 112, 8, 144, 9, 180, 10, 220, 11, 264, 12, 312, 13, 364, 14, 420, 15, 480, 16, 544, 17, 612, 18, 684, 19, 760, 20, 840, 21, 924, 22, 1012, 23, 1104, 24, 1200, 25, 1300, 26, 1404, 27, 1512, 28, 1624, 29, 1740, 30 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
LINKS
FORMULA
a(n) = (n+1)/2 if n is odd, a(n) = n*(n/2+1) if n is even.
G.f.: W(0), where W(k)= 1 + 2*x*(k+2)/( 1 - x/(x + 2*(k+1)/W(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 16 2013
a(n) = 3*a(n-2)-3*a(n-4)+a(n-6). - Colin Barker, Feb 27 2015
G.f.: x*(x^2-4*x-1) / ((x-1)^3*(x+1)^3). - Colin Barker, Feb 27 2015
a(n) = n^(1/2 + (-1)^n/2)*(n + 2^(1/2 + (-1)^n/2))/2. - Wesley Ivan Hurt, Feb 27 2015
a(n) = Sum_{k=0..n} (-1)^k * A061579(n,k). - Alois P. Heinz, Feb 10 2023
EXAMPLE
median{1, 1/2, 1/3, 1/4} = (1/2 + 1/3)/2 = 7/12, so that a(4) = 12.
MAPLE
A226725:=n->n^(1/2 + (-1)^n/2)*(n + 2^(1/2 + (-1)^n/2))/2: seq(A226725(n), n=1..100); # Wesley Ivan Hurt, Feb 27 2015
MATHEMATICA
Denominator[Table[Median[Table[1/k, {k, n}]], {n, 120}]]
f[n_] := If[ OddQ@ n, Floor[(n + 1)/2], n(n/2 + 1)]; Array[f, 59] (* Robert G. Wilson v, Feb 27 2015 *)
With[{nn=30}, Riffle[Range[nn], Table[2n+2n^2, {n, nn}]]] (* Harvey P. Dale, May 26 2019 *)
Riffle[Range[60], LinearRecurrence[{3, -3, 1}, {4, 12, 24}, 60]] (* Harvey P. Dale, Oct 03 2023 *)
PROG
(PARI) Vec(x*(x^2-4*x-1)/((x-1)^3*(x+1)^3) + O(x^100)) \\ Colin Barker, Feb 27 2015
CROSSREFS
Cf. A093178 (numerators), A061579.
KEYWORD
nonn,easy
AUTHOR
Clark Kimberling, Jun 19 2013
EXTENSIONS
Formula changed for even terms by Luca Brigada Villa, Jun 20 2013
STATUS
approved
A019426 Continued fraction for tan(1/3). +0
4
0, 2, 1, 7, 1, 13, 1, 19, 1, 25, 1, 31, 1, 37, 1, 43, 1, 49, 1, 55, 1, 61, 1, 67, 1, 73, 1, 79, 1, 85, 1, 91, 1, 97, 1, 103, 1, 109, 1, 115, 1, 121, 1, 127, 1, 133, 1, 139, 1, 145, 1, 151, 1, 157, 1, 163, 1, 169, 1, 175, 1, 181, 1, 187, 1, 193, 1, 199, 1, 205, 1, 211, 1, 217, 1, 223, 1 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,2
COMMENTS
The simple continued fraction expansion of 3*tan(1/3) is [1; 25, 1, 3, 1, 61, 1, 7, 1, 97, 1, 11, 1, ..., 36*n + 25, 1, 4*n + 3, 1, ...], while the simple continued fraction expansion of (1/3)*tan(1/3) is [0; 8, 1, 1, 1, 43, 1, 5, 1, 79, 1, 9, 1, 115, 1, 13, 1, ..., 36*n + 7, 1, 4*n + 1, 1, ...]. See my comment in A019425. - Peter Bala, Sep 30 2023
LINKS
G. Xiao, Contfrac
FORMULA
From Bruno Berselli, Sep 21 2012: (Start)
G.f.: x*(2+x+3*x^2-x^3+x^4)/(1-x^2)^2.
a(n) = 2*a(n-2)-a(n-4) with n>4, a(0)=0, a(1)=2, a(2)=1, a(3)=7, a(4)=1.
a(n) = 1+3*(1-(-1)^n)*(n-1)/2 with n>1, a(0)=0, a(1)=2.
For k>0: a(2k) = 1, a(4k+1) = 2*a(2k+1)-1 and a(4k+3) = 2*a(2k+1)+5, with a(0)=0, a(1)=2. (End)
EXAMPLE
0.346253549510575491038543565... = 0 + 1/(2 + 1/(1 + 1/(7 + 1/(1 + ...)))). - Harry J. Smith, Jun 13 2009
MATHEMATICA
ContinuedFraction[Tan[1/3], 80] (* Bruno Berselli, Sep 21 2012 *)
PROG
(PARI) { allocatemem(932245000); default(realprecision, 88000); x=contfrac(tan(1/3)); for (n=0, 20000, write("b019426.txt", n, " ", x[n+1])); } \\ Harry J. Smith, Jun 13 2009
(Magma) [n le 1 select 2*n else 1+3*(1-(-1)^n)*(n-1)/2: n in [0..80]]; // Bruno Berselli, Sep 21 2012
CROSSREFS
Cf. A161012 (decimal expansion of tan(1/3)).
Cf. continued fractions for tan(1/m): A019425 (m=2), A019427 (m=4), A019428 (m=5), A019429 (m=6), A019430 (m=7), A019431 (m=8), A019432 (m=9), A019433 (m=10), A093178 (m=1).
KEYWORD
nonn,easy,cofr
AUTHOR
STATUS
approved
A241269 Denominator of c(n) = (n^2+n+2)/((n+1)*(n+2)*(n+3)). +0
8
3, 6, 15, 60, 105, 21, 126, 360, 495, 330, 429, 1092, 1365, 420, 1020, 2448, 2907, 1710, 1995, 4620, 5313, 759, 3450, 7800, 8775, 4914, 5481, 12180, 13485, 3720, 8184, 17952, 19635, 10710, 11655, 25308, 27417, 3705, 15990, 34440, 37023, 19866, 21285, 45540 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,1
COMMENTS
All terms are multiples of 3.
Difference table of c(n):
1/3, 1/6, 2/15, 7/60, 2/21,...
-1/6, -1/30, -1/60, -1/84, -1/105,...
2/15, 1/60, 1/210, 1/420, 1/630,...
-7/60, -1/84, -1/420, -1/1260, -1/2520,... .
This is an autosequence of the second kind; the inverse binomial transform is the signed sequence. The main diagonal is the first upper diagonal multiplied by 2.
Denominators of the main diagonal: A051133(n+1).
Denominators of the first upper diagonal; A000911(n).
c(n) is a companion to A026741(n)/A045896(n).
Based on the Akiyama-Tanigawa transform applied to 1/(n+1) which yields the Bernoulli numbers A164555(n)/A027642(n).
Are the numerators of the main diagonal (-1)^n? If yes, what is the value of 1/3 - 1/30 + 1/210,... or 1 - 1/10 + 1/70 - 1/420, ... , from A002802(n)?
Is a(n+40) - a(n) divisible by 10?
No: a(5) = 21 but a(45) = 12972. # Robert Israel, Jul 17 2023
Are the common divisors to A014206(n) and A007531(n+3) of period 16: repeat 2, 4, 4, 2, 2, 16, 4, 2, 2, 4, 4, 2, 2, 8, 4, 2?
Reduce c(n) = f(n) = b(n)/a(n) = 1/3, 1/6, 2/15, 7/60, 11/105, 2/21, 11/126, 29/360, ... .
Consider the successively interleaved autosequences (also called eigensequences) of the second kind and of the first kind
1, 1/2, 1/3, 1/4, 1/5, 1/6, ...
0, 1/6, 1/6, 3/20, 2/15, 5/42, ...
1/3, 1/6, 2/15, 7/60, 11/105, 2/21, ...
0, 1/10, 1/10, 13/140, 3/35, 5/63, ...
1/5, 1/10, 3/35, 11/140, 23/315, 43/630, ...
0, 1/14, 1/14, 17/252, 4/63, ...
This array is Au1(m,n). Au1(0,0)=1, Au1(0,1)=1/2.
Au1(m+1,n) = 2*Au1(m,n+1) - Au1(m,n).
First row: see A003506, Leibniz's Harmonic Triangle.
Second row: A026741/A045896.
a(n) is the denominator of the third row f(n).
The first column is 1, 0, 1/3, 0, 1/5, 0, 1/7, 0, ... . Numerators: A093178(n+1). This incites, considering tan(1), to introduce before the first row
Ta0(n) = 0, 1/2, 1/2, 5/12, 1/3, 4/15, 13/60, 151/840, ... .
LINKS
FORMULA
c(n) = A014206(n)/A007531(n+3).
The sum of the difference table main diagonal is 1/3 - 1/30 + 1/210 - ... = 10*A086466-4 = 4*(sqrt(5)*log(phi)-1) = 0.3040894... - Jean-François Alcover, Apr 22 2014
a(n) = (n+1)*(n+2)*(n+3)/gcd(4*n - 4, n^2 + n + 2), where gcd(4*n - 4, n^2 + n + 2) is periodic with period 16. - Robert Israel, Jul 17 2023
MAPLE
seq(denom((n^2+n+2)/((n+1)*(n+2)*(n+3))), n=0..1000);
MATHEMATICA
Denominator[Table[(n^2+n+2)/Times@@(n+{1, 2, 3}), {n, 0, 50}]] (* Harvey P. Dale, Mar 27 2015 *)
PROG
(PARI) for(n=0, 100, print1(denominator((n^2+n+2)/((n+1)*(n+2)*(n+3))), ", ")) \\ Colin Barker, Apr 18 2014
KEYWORD
nonn,frac,look
AUTHOR
Paul Curtz, Apr 18 2014
EXTENSIONS
More terms from Colin Barker, Apr 18 2014
STATUS
approved
A289296 a(n) = (n - 1)*(2*floor(n/2) + 1). +0
4
-1, 0, 3, 6, 15, 20, 35, 42, 63, 72, 99, 110, 143, 156, 195, 210, 255, 272, 323, 342, 399, 420, 483, 506, 575, 600, 675, 702, 783, 812, 899, 930, 1023, 1056, 1155, 1190, 1295, 1332, 1443, 1482, 1599, 1640, 1763, 1806, 1935, 1980, 2115, 2162, 2303, 2352, 2499, 2550, 2703, 2756, 2915 (list; graph; refs; listen; history; text; internal format)
OFFSET
0,3
COMMENTS
Summing a(n) by pairs, one gets -1, 9, 35, 77, 135, ... = A033566.
A198442(k) is a member of this sequence if k == 0 or 1 (mod 4). - Bruno Berselli, Jul 04 2017
LINKS
FORMULA
a(n) = A023443(n) * A109613(n).
a(n) = n^2-1 if n is even and n^2-n if n is odd.
n^2 - a(n) = A093178(n).
From Colin Barker, Jul 02 2017: (Start)
G.f.: -(1 - x - 5*x^2 - x^3 - 2*x^4) / ((1 - x)^3*(1 + x)^2).
a(n) = a(n-1) + 2*a(n-2) - 2*a(n-3) - a(n-4) + a(n-5) for n>4. (End)
MATHEMATICA
Table[(n - 1) (2 Floor[n/2] + 1), {n, 0, 60}] (* or *) LinearRecurrence[{1, 2, -2, -1, 1}, {-1, 0, 3, 6, 15}, 61]
PROG
(PARI) a(n)=(n\2*2+1)*(n-1) \\ Charles R Greathouse IV, Jul 02 2017
(PARI) Vec(-(1 - x - 5*x^2 - x^3 - 2*x^4) / ((1 - x)^3*(1 + x)^2) + O(x^60)) \\ Colin Barker, Jul 02 2017
(Python)
def A289296(n): return (n-1)*(n|1) # Chai Wah Wu, Jan 18 2023
CROSSREFS
Subsequence of A214297.
KEYWORD
sign,easy
AUTHOR
STATUS
approved
A161738 Sequence related to the column sums of the BG2 matrix +0
4
1, 1, 3, 15, 35, 315, 693, 9009, 19305, 328185, 692835, 14549535, 30421755, 760543875, 1579591125, 45808142625, 94670161425, 3124115327025, 6432002143875, 237984079323375, 488493636505875, 20028239096740875 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,3
LINKS
FORMULA
a(n) = product((2*n-3-2*k), k=0..floor(n/2-1)).
numer(a(n+2)/a(n+1)) = A005408(n) for n=>0.
denom(a(n+2)/a(n+1)) = A093178(n) for n=>0.
MATHEMATICA
Table[Product[(2*n - 3 - 2*k), {k, 0, Floor[n/2 - 1]}], {n, 1, 50}] (* G. C. Greubel, Sep 26 2018 *)
PROG
(PARI) for(n=1, 50, print1(prod(k=0, floor(n/2 -1), 2*n-2*k-3), ", ")) \\ G. C. Greubel, Sep 26 2018
(Magma) [1] cat [(&*[2*n-2*k-3:k in [0..Floor(n/2 -1)]]): n in [2..50]]; // G. C. Greubel, Sep 26 2018
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Johannes W. Meijer, Jun 18 2009
STATUS
approved
A129779 a(1) = 1, a(2) = -1, a(3) = 2; for n > 3, a(n) = -(2*n-5)*a(n-1). +0
3
1, -1, 2, -6, 30, -210, 1890, -20790, 270270, -4054050, 68918850, -1309458150, 27498621150, -632468286450, 15811707161250, -426916093353750, 12380566707258750, -383797567925021250, 12665319741525701250 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,3
COMMENTS
Sequence is also the first column of the inverse of the infinite lower triangular matrix M, where M(j,k) = 1+2*(k-1)*(j-k) for k < j, M(j,k) = 1 for k = j, M(j,k) = 0 for k > j.
Upper left 6 X 6 submatrix of M is
[ 1 0 0 0 0 0 ]
[ 1 1 0 0 0 0 ]
[ 1 3 1 0 0 0 ]
[ 1 5 5 1 0 0 ]
[ 1 7 9 7 1 0 ]
[ 1 9 13 13 9 1 ],
and upper left 6 X 6 submatrix of M^-1 is
[ 1 0 0 0 0 0 ]
[ -1 1 0 0 0 0 ]
[ 2 -3 1 0 0 0 ]
[ -6 10 -5 1 0 0 ]
[ 30 -50 26 -7 1 0 ]
[ -210 350 -182 50 -9 1 ].
Row sums of M are 1, 2, 5, 12, 25, 46, ... (see A116731); diagonal sums of M are 1, 1, 2, 4, 7, 13, 20, 32, 45, 65, 86, 116, 147, 189, ... with first differences 0, 1, 2, 3, 6, 7, 12, 13, 20, 21, 30, 31, 42, ... and second differences 1, 1, 1, 3, 1, 5, 1, 7, 1, 9, 1, 11, ... (see A093178).
LINKS
FORMULA
a(n) = (-1)^(n-1)*A097801(n-2) = (-1)^(n-1)*(2*(n-2))!/((n-2)!*2^(n-3)) for n > 2, with a(1)=1, a(2)=-1.
G.f.: 1 + x - x*W(0) , where W(k) = 1 + 1/( 1 - x*(2*k+1)/( x*(2*k+1) - 1/W(k+1) )); (continued fraction). - Sergei N. Gladkovskii, Aug 22 2013
MAPLE
seq(`if`(n<3, (-1)^(n-1), (-1)^(n-1)*(2*n-5)!/(2^(n-4)*(n-3)!)), n=1..25); # G. C. Greubel, Nov 25 2019
MATHEMATICA
a[n_]:= -(2*n-5)*a[n-1]; a[1]=1; a[2]=-1; a[3]=2; Array[a, 20] (* Robert G. Wilson v *)
Table[If[n<3, (-1)^(n-1), (-1)^(n+1)*(2*n-5)!/(2^(n-4)*(n-3)!)], {n, 25}] (* G. C. Greubel, Nov 25 2019 *)
PROG
(PARI) {m=19; print1(1, ", ", -1, ", "); print1(a=2, ", "); for(n=4, m, k=-(2*n-5)*a; print1(k, ", "); a=k)} \\ Klaus Brockhaus, May 21 2007
(PARI) {print1(1, ", ", -1, ", "); for(n=3, 19, print1((-1)^(n-1)*(2*(n-2))!/((n-2)!*2^(n-3)), ", "))} \\ Klaus Brockhaus, May 21 2007
(PARI) {m=19; M=matrix(m, m, j, k, if(k>j, 0, if(k==j, 1, 1+2*(k-1)*(j-k)))); print((M^-1)[, 1]~)} \\ Klaus Brockhaus, May 21 2007
(Magma) m:=19; M:=Matrix(IntegerRing(), m, m, [< j, k, Maximum(0, 1+2*(k-1)*(j-k)) > : j, k in [1..m] ] ); Transpose(ColumnSubmatrix(M^-1, 1, 1)); \\ Klaus Brockhaus, May 21 2007
(Magma) F:=Factorial; [1, -1] cat [(-1)^(n+1)*F(2*n-5)/(2^(n-4)*F(n-3)): n in [3..25]]; // G. C. Greubel, Nov 25 2019
(Sage) f=factorial; [1, -1]+[(-1)^(n+1)*f(2*n-5)/(2^(n-4)*f(n-3)) for n in (3..25)] # G. C. Greubel, Nov 25 2019
(GAP) F:=Factorial;; Concatenation([1, -1], List([3..25], n-> (-1)^(n+1)*F(2*n-5)/(2^(n-4)*F(n-3)) )); # G. C. Greubel, Nov 25 2019
CROSSREFS
KEYWORD
sign
AUTHOR
Paul Curtz, May 17 2007
EXTENSIONS
Edited and extended by Klaus Brockhaus and Robert G. Wilson v, May 21 2007
STATUS
approved
A130404 Partial sums of A093178. +0
1
1, 2, 3, 6, 7, 12, 13, 20, 21, 30, 31, 42, 43, 56, 57, 72, 73, 90, 91, 110, 111, 132, 133, 156, 157, 182, 183, 210, 211, 240, 241, 272, 273, 306, 307, 342, 343, 380, 381, 420, 421, 462, 463, 506, 507, 552, 553, 600, 601, 650, 651, 702, 703, 756, 757, 812, 813 (list; graph; refs; listen; history; text; internal format)
OFFSET
1,2
COMMENTS
Numbers n such that floor(n/2) is a positive triangular number. - Bruno Berselli, Sep 15 2014
LINKS
FORMULA
a(1) = 1; for n > 1, a(n) = a(n-1)+1 if n is odd, a(n) = a(n-1)+(n-1) if n is even.
a(n) = A002061((n+1)/2) = (n^2+3)/4 if n is odd, a(n) = A002378(n/2) = (n^2+2*n)/4) if n is even.
G.f.: x*(1+x-x^2+x^3)/((1-x)^3*(1+x)^2).
a(n) = A093178(n) - A093178(n-1).
a(1) = 1; a(n) = a(n-1) + n^(n mod 2) = (1/4)*(n^2 + 2n + 4 + (n mod 2)*(2n-1)). - Rolf Pleisch, Feb 04 2008
a(n) = (2*(n-1)*(n+2) + (2*n-3)*(-1)^n+7)/8. - Bruno Berselli, Mar 31 2011
MATHEMATICA
Table[If[EvenQ[n], 1, n], {n, 0, 56}] // Accumulate (* Jean-François Alcover, Jun 10 2013 *)
Accumulate[Join[{1}, Riffle[Range[1, 85, 2], 1]]] (* or *) LinearRecurrence[ {1, 2, -2, -1, 1}, {1, 2, 3, 6, 7}, 90] (* Harvey P. Dale, Jun 01 2016 *)
PROG
(PARI) {s=0; for(n=1, 57, s=s+if(n%2>0, 1, n-1); print1(s, ", "))}
(PARI) {for(n=1, 57, print1(if(n%2>0, (n^2+3)/4, (n^2+2*n)/4), ", "))}
(Magma) &cat[ [ n^2-n+1, n*(n+1) ]: n in [1..29] ];
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Klaus Brockhaus, May 25 2007
STATUS
approved
page 1 2 3

Search completed in 0.013 seconds

Lookup | Welcome | Wiki | Register | Music | Plot 2 | Demos | Index | Browse | More | WebCam
Contribute new seq. or comment | Format | Style Sheet | Transforms | Superseeker | Recents
The OEIS Community | Maintained by The OEIS Foundation Inc.

License Agreements, Terms of Use, Privacy Policy. .

Last modified August 30 00:57 EDT 2024. Contains 375520 sequences. (Running on oeis4.)