[go: up one dir, main page]

login
Search: a090991 -id:a090991
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number of binary vectors of length n containing no singletons.
+10
85
1, 0, 2, 2, 4, 6, 10, 16, 26, 42, 68, 110, 178, 288, 466, 754, 1220, 1974, 3194, 5168, 8362, 13530, 21892, 35422, 57314, 92736, 150050, 242786, 392836, 635622, 1028458, 1664080, 2692538, 4356618, 7049156, 11405774, 18454930, 29860704, 48315634
OFFSET
0,3
COMMENTS
Number of cvtemplates at n-2 letters given <= 2 consecutive consonants or vowels (n >= 4).
Number of (n,2) Freiman-Wyner sequences.
Diagonal sums of the Riordan array ((1-x+x^2)/(1-x), x/(1-x)), A072405 (where this begins 1,0,1,1,1,1,...). - Paul Barry, May 04 2005
Central terms of the triangle in A094570. - Reinhard Zumkeller, Mar 22 2011
Pisano period lengths: 1, 1, 8, 3, 20, 8, 16, 6, 24, 20, 10, 24, 28, 16, 40, 12, 36, 24, 18, 60, ... . - R. J. Mathar, Aug 10 2012
Also the number of matchings in the (n-2)-pan graph for n >= 5. - Eric W. Weisstein, Oct 03 2017
a(n) is the number of bimultus bitstrings of length n. A bitstring is bimultus if each of its 1's possess at least one neighboring 1 and each of its 0's possess at least one neighboring 0. - Steven Finch, May 26 2020
REFERENCES
A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 16, 51.
LINKS
Charles R Greathouse IV, Table of n, a(n) for n = 0..4786 (next term has 1001 digits)
Kassie Archer and Aaron Geary, Powers of permutations that avoid chains of patterns, arXiv:2312.14351 [math.CO], 2023. See p. 15.
J. Berman and P. Koehler, Cardinalities of finite distributive lattices, Mitteilungen aus dem Mathematischen Seminar Giessen, 121 (1976), 103-124. [Annotated scanned copy]
Ian F. Blake, The enumeration of certain run length sequences, Information and Control, 55 (1982), 222-237.
A. Burstein, S. Kitaev, and T. Mansour, Partially ordered patterns and their combinatorial interpretations, PU. M. A. Vol. 19 (2008), No. 2-3, pp. 27-38.
Steven Finch, Variance of longest run duration in a random bitstring, arXiv:2005.12185 [math.CO], 2020.
Enoch Haga, Room for Expansion, Word Ways, 33 (No. 2, 2000), pp. 106-113 (see p. 110).
Sergey Kitaev and Jeffrey Remmel, (a,b)-rectangle patterns in permutations and words, arXiv:1304.4286 [math.CO], 2013.
Noriaki Sannomiya, H. Katsura, and Y. Nakayama, Supersymmetry breaking and Nambu-Goldstone fermions with cubic dispersion, arXiv preprint arXiv:1612.02285 [cond-mat.str-el], 2016-2017. See Table II, line 2.
Eric Weisstein's World of Mathematics, Independent Edge Set, Matching and Pan Graph.
FORMULA
a(n+2) = F(n-1) + F(n+2), for n > 0.
G.f.: (1-x+x^2)/(1-x-x^2). - Paul Barry, May 04 2005
a(n) = A119457(n-1,n-2) for n > 2. - Reinhard Zumkeller, May 20 2006
a(n) = 2*F(n-1) for n > 0, F(n)=A000045(n) and a(0)=1. - Mircea Merca, Jun 28 2012
G.f.: 1 - x + x*Q(0), where Q(k) = 1 + x^2 + (2*k+3)*x - x*(2*k+1 + x)/Q(k+1); (continued fraction). - Sergei N. Gladkovskii, Oct 05 2013
a(n) = A118658(n) - 0^n. - M. F. Hasler, Nov 05 2014
a(n) = (2^(-n)*((1-r)^n*(1+r) + (-1+r)*(1+r)^n)) / r for n > 0, where r=sqrt(5). - Colin Barker, Jan 28 2017
a(n) = a(n-1) + a(n-2) for n >= 3. - Armend Shabani, Nov 25 2020
E.g.f.: 2*exp(x/2)*(5*cosh(sqrt(5)*x/2) - sqrt(5)*sinh(sqrt(5)*x/2))/5 - 1. - Stefano Spezia, Apr 18 2022
a(n) = F(n-3) + F(n-2) + F(n-1) for n >= 3, where F(n)=A000045(n). - Gergely Földvári, Aug 03 2024
EXAMPLE
a(6)=10 because we have: 000000, 000011, 000111, 001100, 001111, 110000, 110011, 111000, 111100, 111111. - Geoffrey Critzer, Jan 26 2014
MAPLE
a:= n-> if n=0 then 1 else (Matrix([[2, -2]]). Matrix([[1, 1], [1, 0]])^n) [1, 1] fi: seq(a(n), n=0..38); # Alois P. Heinz, Aug 18 2008
a := n -> ifelse(n=0, 1, -2*I^n*ChebyshevU(n-2, -I/2)):
seq(simplify(a(n)), n = 0..38); # Peter Luschny, Dec 03 2023
MATHEMATICA
Join[{1}, Last[#] - First[#] & /@ Partition[Fibonacci[Range[-1, 40]], 4, 1]] (* Harvey P. Dale, Sep 30 2011 *)
Join[{1}, LinearRecurrence[{1, 1}, {0, 2}, 38]] (* Jean-François Alcover, Sep 23 2017 *)
Join[{1}, Table[2 Fibonacci[n], {n, 0, 20}]] (* Eric W. Weisstein, Oct 03 2017 *)
Join[{1}, 2 Fibonacci[Range[0, 20]]] (* Eric W. Weisstein, Oct 03 2017 *)
CoefficientList[Series[(-1 + x - x^2)/(-1 + x + x^2), {x, 0, 20}], x] (* Eric W. Weisstein, Oct 03 2017 *)
PROG
(PARI) a(n)=if(n, 2*fibonacci(n-1), 1) \\ Charles R Greathouse IV, Mar 14 2012
(Haskell)
a006355 n = a006355_list !! n
a006355_list = 1 : fib2s where
fib2s = 0 : map (+ 1) (scanl (+) 1 fib2s)
-- Reinhard Zumkeller, Mar 20 2013
(Magma) [1] cat [Lucas(n) - Fibonacci(n): n in [1..50]]; // Vincenzo Librandi, Aug 02 2014
(PARI) my(x='x+O('x^50)); Vec((1-x+x^2)/(1-x-x^2)) \\ Altug Alkan, Nov 01 2015
CROSSREFS
Except for initial term, = 2*Fibonacci numbers (A000045).
Essentially the same as A047992, A054886, A055389, A068922, and A090991.
Cf. A097925, A097926. Column 2 in A265584.
KEYWORD
nonn,easy,nice
AUTHOR
David M. Bloom
EXTENSIONS
Corrected by T. D. Noe, Oct 31 2006
STATUS
approved
a(n) = 2*F(n-1) = L(n) - F(n), where F(n) and L(n) are Fibonacci and Lucas numbers respectively.
+10
14
2, 0, 2, 2, 4, 6, 10, 16, 26, 42, 68, 110, 178, 288, 466, 754, 1220, 1974, 3194, 5168, 8362, 13530, 21892, 35422, 57314, 92736, 150050, 242786, 392836, 635622, 1028458, 1664080, 2692538, 4356618, 7049156, 11405774, 18454930, 29860704, 48315634, 78176338
OFFSET
0,1
COMMENTS
Essentially the same as A006355, A047992, A054886, A055389, A068922, A078642, A090991. - Philippe Deléham, Sep 20 2006 and Georg Fischer, Oct 07 2018
Also the number of matchings in the (n-2)-pan graph. - Eric W. Weisstein, Jun 30 2016
Also the number of maximal independent vertex sets (and minimal vertex covers) in the (n-1)-ladder graph. - Eric W. Weisstein, Jun 30 2017
LINKS
Tanya Khovanova, Recursive Sequences
Eric Weisstein's World of Mathematics, Independent Edge Set
Eric Weisstein's World of Mathematics, Ladder Graph
Eric Weisstein's World of Mathematics, Matching
Eric Weisstein's World of Mathematics, Maximal Independent Vertex Set
Eric Weisstein's World of Mathematics, Minimal Vertex Cover
Eric Weisstein's World of Mathematics, Pan Graph
FORMULA
From Philippe Deléham, Sep 20 2006: (Start)
a(0)=2, a(1)=0; for n > 1, a(n) = a(n-1) + a(n-2).
G.f. (2 - 2*x)/(1 - x - x^2).
a(0)=2 and a(n) = 2*A000045(n-1) for n > 0. (End)
a(n) = A006355(n) + 0^n. - M. F. Hasler, Nov 05 2014
a(n) = Lucas(n-2) + Fibonacci(n-2). - Bruno Berselli, May 27 2015
a(n) = 3*Fibonacci(n-2) + Fibonacci(n-5). - Bruno Berselli, Feb 20 2017
a(n) = 2*A212804(n). - Bruno Berselli, Feb 21 2017
E.g.f.: 2*exp(x/2)*(5*cosh(sqrt(5)*x/2) - sqrt(5)*sinh(sqrt(5)*x/2))/5. - Stefano Spezia, Apr 18 2022
MAPLE
with(combinat): seq(2*fibonacci(n-1), n=0..40); # Muniru A Asiru, Oct 07 2018
a := n -> -2*I^n*ChebyshevU(n-2, -I/2):
seq(simplify(a(n)), n = 0..39); # Peter Luschny, Dec 03 2023
MATHEMATICA
LinearRecurrence[{1, 1}, {2, 0}, 100] (* Vladimir Joseph Stephan Orlovsky, Jun 05 2011 *)
Table[LucasL[n] - Fibonacci[n], {n, 0, 40}] (* Vincenzo Librandi, Sep 14 2014 *)
Table[2 Fibonacci[n - 1], {n, 0, 20}] (* Eric W. Weisstein, Jun 30 2017 *)
2 Fibonacci[Range[0, 20] - 1] (* Eric W. Weisstein, Jun 30 2017 *)
Subtract @@@ (Through[{LucasL, Fibonacci}[#]] & /@ Range[0, 20]) (* Eric W. Weisstein, Jun 30 2017 *)
CoefficientList[Series[(2 (-1 + x))/(-1 + x + x^2), {x, 0, 20}], x] (* Eric W. Weisstein, Jun 30 2017 *)
PROG
(PARI) a(n)=fibonacci(n-1)<<1 \\ Charles R Greathouse IV, Jun 05 2011
(Magma) [Lucas(n) - Fibonacci(n): n in [0..40]]; // Vincenzo Librandi, Sep 14 2014
(GAP) List([0..40], n->2*Fibonacci(n-1)); # Muniru A Asiru, Oct 07 2018
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Bill Jones (b92057(AT)yahoo.com), May 18 2006
EXTENSIONS
More terms from Philippe Deléham, Sep 20 2006
Corrected by T. D. Noe, Nov 01 2006
STATUS
approved
Number of meaningful differential operations of the n-th order on the space R^5.
+10
6
5, 9, 16, 29, 52, 94, 169, 305, 549, 990, 1783, 3214, 5790, 10435, 18801, 33881, 61048, 110009, 198224, 357194, 643633, 1159797, 2089869, 3765830, 6785771, 12227562, 22033274, 39702627, 71541613, 128913593, 232294192, 418579765
OFFSET
1,1
COMMENTS
Also number of meaningful compositions of the n-th order of the differential operations and Gateaux directional derivative on the space R^4. - Branko Malesevic and Ivana Jovovic (ivana121(AT)EUnet.yu), Jun 21 2007
LINKS
Branko Malesevic, Some combinatorial aspects of differential operation composition on the space R^n, Univ. Beograd, Publ. Elektrotehn. Fak., Ser. Mat. 9 (1998), 29-33.
Branko Malesevic and I. Jovovic, The Compositions of the Differential Operations and Gateaux Directional Derivative, arXiv:0706.0249 [math.CO], 2007.
FORMULA
a(n+3) = a(n+2) + 2*a(n+1) - a(n).
G.f.: x*(5+4*x-3*x^2)/(1-x-2*x^2+x^3). - Ralf Stephan, Aug 19 2004
MAPLE
NUM := proc(k :: integer) local i, j, n, Fun, Identity, v, A; n := 5; # <- DIMENSION Fun := (i, j)->piecewise(((j=i+1) or (i+j=n+1)), 1, 0); Identity := (i, j)->piecewise(i=j, 1, 0); v := matrix(1, n, 1); A := piecewise(k>1, (matrix(n, n, Fun))^(k-1), k=1, matrix(n, n, Identity)); return(evalm(v&*A&*transpose(v))[1, 1]); end:
MATHEMATICA
LinearRecurrence[{1, 2, -1}, {5, 9, 16}, 32] (* Jean-François Alcover, Nov 22 2017 *)
PROG
(PARI) my(x='x+O('x^40)); Vec(x*(5+4*x-3*x^2)/(1-x-2*x^2+x^3)) \\ G. C. Greubel, Feb 02 2019
(Magma) m:=40; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!( x*(5+4*x-3*x^2)/(1-x-2*x^2+x^3) )); // G. C. Greubel, Feb 02 2019
(Sage) a=(x*(5+4*x-3*x^2)/(1-x-2*x^2+x^3)).series(x, 40).coefficients(x, sparse=False); a[1:] # G. C. Greubel, Feb 02 2019
(GAP) a:=[5, 9, 16];; for n in [4..30] do a[n]:=a[n-1]+2*a[n-2]-a[n-3]; od; a; # G. C. Greubel, Feb 02 2019
KEYWORD
nonn
AUTHOR
Branko Malesevic, Feb 29 2004
EXTENSIONS
More terms from Ralf Stephan, Aug 19 2004
More terms from Branko Malesevic and Ivana Jovovic (ivana121(AT)EUnet.yu), Jun 21 2007
STATUS
approved
Number of meaningful differential operations of the k-th order on the space R^12.
+10
4
12, 22, 40, 74, 136, 252, 464, 860, 1584, 2936, 5408, 10024, 18464, 34224, 63040, 116848, 215232, 398944, 734848, 1362080, 2508928, 4650432, 8566016, 15877568, 29246208, 54209408, 99852800, 185082496, 340918784, 631911168, 1163969536
OFFSET
12,1
COMMENTS
Also (starting 7,12,...) the number of zig-zag paths from top to bottom of a rectangle of width 7. [Joseph Myers, Dec 23 2008]
LINKS
FORMULA
f(k+6) = 6*f(k+4)-10*f(k+2)+4*f(k).
Empirical G.f.: 2*x^12*(6+11*x-4*x^2-7*x^3)/(1-4*x^2+2*x^4). [Colin Barker, May 07 2012]
MAPLE
NUM := proc(k :: integer) local i, j, n, Fun, Identity, v, A; n:=12; # <- DIMENSION Fun:=(i, j)->piecewise(((j=i+1) or (i+j=n+1)), 1, 0); Identity:=(i, j)->piecewise(i=j, 1, 0); v:=matrix(1, n, 1); A:=piecewise(k>1, (matrix(n, n, Fun))^(k-1), k=1, matrix(n, n, Identity)); return(evalm(v&*A&*transpose(v))[1, 1]); end:
MATHEMATICA
f[k_] := f[k] = If[k <= 17, {12, 22, 40, 74, 136, 252}[[k-11]], 6 f[k-2] - 10 f[k-4] + 4 f[k-6]];
f /@ Range[12, 42] (* Jean-François Alcover, Apr 21 2020 *)
KEYWORD
nonn
AUTHOR
Branko Malesevic, May 31 2007
EXTENSIONS
More terms from Joseph Myers, Dec 23 2008
STATUS
approved
Number of n X 2 binary arrays with all 1s connected, a path of 1s from top row to bottom row, and no 1 having more than two 1s adjacent.
+10
3
3, 7, 10, 16, 26, 42, 68, 110, 178, 288, 466, 754, 1220, 1974, 3194, 5168, 8362, 13530, 21892, 35422, 57314, 92736, 150050, 242786, 392836, 635622, 1028458, 1664080, 2692538, 4356618, 7049156, 11405774, 18454930, 29860704, 48315634, 78176338
OFFSET
1,1
COMMENTS
Same recurrence for A163695.
Same recurrence for A163733.
LINKS
FORMULA
Empirical: a(n) = a(n-1) + a(n-2) for n>=5.
Conjectures from Colin Barker, Feb 22 2018: (Start)
G.f.: x*(1 + x)*(3 + x - x^2) / (1 - x - x^2).
a(n) = (2^(-n)*((1-sqrt(5))^n*(-3+sqrt(5)) + (1+sqrt(5))^n*(3+sqrt(5)))) / sqrt(5) for n>2.
(End)
EXAMPLE
All solutions for n=4:
...1.0...1.0...1.1...1.1...0.1...0.1...1.1...1.1...1.0...1.1...1.0...1.0...0.1
...1.0...1.0...1.0...1.0...0.1...0.1...0.1...0.1...1.0...1.0...1.1...1.1...0.1
...1.0...1.0...1.0...1.0...0.1...0.1...0.1...0.1...1.1...1.1...0.1...0.1...1.1
...1.0...1.1...1.0...1.1...0.1...1.1...0.1...1.1...0.1...0.1...0.1...1.1...1.0
------
...1.1...0.1...0.1
...0.1...1.1...1.1
...1.1...1.0...1.0
...1.0...1.0...1.1
CROSSREFS
Cf. A090991, A078642, A047992. - R. J. Mathar, Aug 06 2009
KEYWORD
nonn
AUTHOR
R. H. Hardin, Aug 03 2009
STATUS
approved
Array T(k,n) = number of meaningful differential operations of the n-th order on the space R^(3+k), for k=>0, n>0, read by antidiagonals.
+10
2
3, 4, 5, 5, 6, 8, 6, 9, 8, 13, 7, 10, 16, 12, 21, 8, 13, 16, 29, 16, 34, 9, 14, 24, 26, 52, 24, 55, 10, 17, 24, 45, 42, 94, 32, 89, 11, 18, 32, 42, 84, 68, 169
OFFSET
1,1
COMMENTS
Two more rows can be obtained from A129638 and A129639.
LINKS
Branko Malesevic, Some combinatorial aspects of differential operation composition on the space R^n, Univ. Beograd, Publ. Elektrotehn. Fak., Ser. Mat. 9 (1998), 29-33; arXiv:0704.0750 [math.DG], 2007.
EXAMPLE
Table begins:
k=0.|.3..5..8.13..21..34..55..89..144..233..377..610..987.1597...
k=1.|.4..6..8.12..16..24..32..48...64...96..128..192..256..384...
k=2.|.5..9.16.29..52..94.169.305..549..990.1783.3214.5790...
k=3.|.6.10.16.26..42..68.110.178..288..466..754.1220.1974...
k=4.|.7.13.24.45..84.158.296.557.1045.1966.3691.6942.13038...
k=5.|.8.14.24.42..72.126.216.378..648.1134.1944.3402..5832...
k=6.|.9.17.32.61.116.222.424.813.1556.2986.5721.10982...
k=7.|10.18.32.58.104.188.338.610.1098.1980.3566.6428...
CROSSREFS
k=0 row is A020701. k=1 row is A090989. k=2 row is A090990. k=3 row is A090991. k=4 row is A090992. k=5 row is A090993. k=6 row is A090994. k=7 row is A090995.
Diagonal: A127935.
KEYWORD
easy,nonn,tabl
AUTHOR
Jonathan Vos Post, Apr 08 2007
STATUS
approved
Number of 2n-bead necklaces labeled with numbers 1..4 allowing reversal, with neighbors differing by exactly 1.
+10
1
3, 5, 8, 14, 24, 47, 89, 187, 396, 881, 1990, 4645, 10935, 26211, 63320, 154378, 378444, 933023, 2308957, 5735372, 14286908, 35683815, 89324138, 224057919, 563033979, 1417210457, 3572641304, 9018885122, 22796905056, 57692673963, 146167385345, 370710166435
OFFSET
1,1
LINKS
FORMULA
a(n) = (2*A208723(n) + A090991(n))/4. - Andrew Howroyd, Mar 19 2017
EXAMPLE
All solutions for n=4:
..1....2....2....2....1....1....1....1....1....3....1....1....2....2
..2....3....3....3....2....2....2....2....2....4....2....2....3....3
..1....2....2....2....1....1....3....3....3....3....3....1....4....4
..2....3....3....3....2....2....4....2....2....4....2....2....3....3
..1....4....2....2....3....1....3....1....3....3....3....3....2....4
..2....3....3....3....4....2....4....2....4....4....2....2....3....3
..1....4....2....4....3....3....3....3....3....3....3....3....4....4
..2....3....3....3....2....2....2....2....2....4....2....2....3....3
CROSSREFS
Column 4 of A208671.
KEYWORD
nonn
AUTHOR
R. H. Hardin, Feb 29 2012
EXTENSIONS
a(25)-a(32) from Andrew Howroyd, Mar 19 2017
STATUS
approved

Search completed in 0.012 seconds