[go: up one dir, main page]

login
Search: a090520 -id:a090520
     Sort: relevance | references | number | modified | created      Format: long | short | data
Smallest prime p such that floor((10^n)/p) is prime, or 0 if no such number exists.
+10
5
2, 13, 23, 13, 89, 19, 7, 47, 67, 13, 17, 157, 17, 313, 107, 409, 151, 773, 149, 409, 109, 13, 29, 211, 7, 19, 149, 431, 859, 43, 109, 167, 277, 13, 2293, 173, 907, 107, 1087, 617, 449, 1013, 73, 1249, 743, 109, 233, 499, 191, 479
OFFSET
1,1
COMMENTS
Conjecture: No term is zero. Subsidiary Sequence: Number of primes in floor((10^n)/p), p is a prime. a(1) = 3, the primes are 10/2, floor(10/3) and 10/5.
LINKS
EXAMPLE
a(5) = 89, as floor((10^5)/89) = 1123 is the largest such prime.
MAPLE
f:= proc(n) local t, p;
t:= 10^n;
p:= 1;
while p < t/2 do
p:= nextprime(p);
if isprime(floor(t/p)) then return p fi
od;
0
end proc:
map(f, [$1..50]); # Robert Israel, Jul 30 2023
MATHEMATICA
<<NumberTheory`; Do[k = 2; While[ !PrimeQ[Floor[10^n / k]], k = NextPrime[k]]; Print[k], {n, 1, 50}] (* Ryan Propper, Jun 19 2005 *)
CROSSREFS
KEYWORD
base,nonn
AUTHOR
Amarnath Murthy, Dec 07 2003
EXTENSIONS
Corrected and extended by Ryan Propper, Jun 19 2005
STATUS
approved
Primes arising in A090517, or 0 if A090517(n) = 0.
+10
4
5, 11, 83, 769, 3571, 52631, 1428571, 3703703, 83333333, 769230769, 5882352941, 13513513513, 588235294117, 7142857142857, 12195121951219, 151515151515151, 2777777777777777, 22727272727272727, 1111111111111111111
OFFSET
1,1
COMMENTS
Conjecture: No term is zero.
PROG
(PARI) A090518(n)={ local(k, tenn) ; k=1 ; tenn=10^n ; while(1, if( isprime(floor(tenn/k)), return(floor(tenn/k)) ) ; k++ ; ) ; } { for(n=1, 40, print1(A090518(n), ", ") ; ) } - R. J. Mathar, Nov 19 2006
CROSSREFS
KEYWORD
base,nonn
AUTHOR
Amarnath Murthy, Dec 07 2003
EXTENSIONS
Corrected and extended by R. J. Mathar, Nov 19 2006
STATUS
approved
Least k such that floor[(10^n)/k] is prime.
+10
3
2, 9, 12, 13, 28, 19, 7, 27, 12, 13, 17, 74, 17, 14, 82, 66, 36, 44, 9, 36, 21, 13, 9, 90, 7, 19, 149, 51, 321, 35, 12, 14, 140, 13, 28, 42, 34, 36, 153, 155, 133, 46, 73, 106, 162, 109, 122, 42, 62, 422, 29, 231, 38, 34, 340, 295, 151, 197, 94, 19, 17, 83, 131, 66, 36
OFFSET
1,1
EXAMPLE
a(1) = 2 as 10/2 = 5 is a prime. a(3) = 12 as floor[1000/12] = 83 is prime.
MATHEMATICA
lkp[n_]:=Module[{k=2, c=10^n}, While[!PrimeQ[Floor[c/k]], k++]; k]; Array[ lkp, 70] (* Harvey P. Dale, Jul 09 2018 *)
CROSSREFS
KEYWORD
base,nonn
AUTHOR
Amarnath Murthy, Dec 07 2003
EXTENSIONS
Corrected and extended by Mohammed Bouayoun (bouyao(AT)wanadoo.fr), Jan 28 2004
Further terms from David Wasserman, Dec 20 2005
STATUS
approved

Search completed in 0.006 seconds