[go: up one dir, main page]

login
Search: a090519 -id:a090519
     Sort: relevance | references | number | modified | created      Format: long | short | data
Primes arising in A090519, or 0 if A090519(n)= 0.
+20
4
5, 7, 43, 769, 1123, 52631, 1428571, 2127659, 14925373, 769230769, 5882352941, 6369426751, 588235294117, 319488817891, 9345794392523, 24449877750611, 662251655629139, 1293661060802069, 67114093959731543, 244498777506112469
OFFSET
1,1
COMMENTS
Conjecture: No term is zero.
PROG
(PARI) A090520(n)={ local(p, tenn) ; p=2 ; tenn=10^n ; while(tenn/p>=2, if( isprime(floor(tenn/p)), return(floor(tenn/p)) ) ; p=nextprime(p+1) ; ) ; return(0) ; } { for(n=1, 40, print1(A090520(n), ", ") ; ) } - R. J. Mathar, Nov 19 2006
CROSSREFS
KEYWORD
base,nonn
AUTHOR
Amarnath Murthy, Dec 07 2003
EXTENSIONS
Corrected and extended by R. J. Mathar, Nov 19 2006
STATUS
approved
Primes arising in A090517, or 0 if A090517(n) = 0.
+10
4
5, 11, 83, 769, 3571, 52631, 1428571, 3703703, 83333333, 769230769, 5882352941, 13513513513, 588235294117, 7142857142857, 12195121951219, 151515151515151, 2777777777777777, 22727272727272727, 1111111111111111111
OFFSET
1,1
COMMENTS
Conjecture: No term is zero.
PROG
(PARI) A090518(n)={ local(k, tenn) ; k=1 ; tenn=10^n ; while(1, if( isprime(floor(tenn/k)), return(floor(tenn/k)) ) ; k++ ; ) ; } { for(n=1, 40, print1(A090518(n), ", ") ; ) } - R. J. Mathar, Nov 19 2006
CROSSREFS
KEYWORD
base,nonn
AUTHOR
Amarnath Murthy, Dec 07 2003
EXTENSIONS
Corrected and extended by R. J. Mathar, Nov 19 2006
STATUS
approved
Least k such that floor[(10^n)/k] is prime.
+10
3
2, 9, 12, 13, 28, 19, 7, 27, 12, 13, 17, 74, 17, 14, 82, 66, 36, 44, 9, 36, 21, 13, 9, 90, 7, 19, 149, 51, 321, 35, 12, 14, 140, 13, 28, 42, 34, 36, 153, 155, 133, 46, 73, 106, 162, 109, 122, 42, 62, 422, 29, 231, 38, 34, 340, 295, 151, 197, 94, 19, 17, 83, 131, 66, 36
OFFSET
1,1
EXAMPLE
a(1) = 2 as 10/2 = 5 is a prime. a(3) = 12 as floor[1000/12] = 83 is prime.
MATHEMATICA
lkp[n_]:=Module[{k=2, c=10^n}, While[!PrimeQ[Floor[c/k]], k++]; k]; Array[ lkp, 70] (* Harvey P. Dale, Jul 09 2018 *)
CROSSREFS
KEYWORD
base,nonn
AUTHOR
Amarnath Murthy, Dec 07 2003
EXTENSIONS
Corrected and extended by Mohammed Bouayoun (bouyao(AT)wanadoo.fr), Jan 28 2004
Further terms from David Wasserman, Dec 20 2005
STATUS
approved
Numbers k such that floor(10^k/7) is prime.
+10
1
7, 25, 355, 823
OFFSET
1,1
COMMENTS
Numbers k such that A090519(k) = 7.
All terms == 1 (mod 6).
Numbers k such that (10^k-3)/7 is prime.
a(5) > 20000 if it exists. - Hugo Pfoertner, Jul 31 2023
EXAMPLE
a(1) = 7 is a term because floor(10^7/7) = 1428571 is prime.
MAPLE
select(n -> isprime(floor(10^n/7)), [seq(i, i=1..1000, 6)]);
CROSSREFS
Cf. A090519.
KEYWORD
nonn,more,hard
AUTHOR
Robert Israel, Jul 31 2023
STATUS
approved

Search completed in 0.006 seconds