[go: up one dir, main page]

login
Search: a085807 -id:a085807
     Sort: relevance | references | number | modified | created      Format: long | short | data
Determinant of the symmetric n X n matrix A defined by A[i,j] = |i-j| for 1 <= i,j <= n.
+10
24
0, -1, 4, -12, 32, -80, 192, -448, 1024, -2304, 5120, -11264, 24576, -53248, 114688, -245760, 524288, -1114112, 2359296, -4980736, 10485760, -22020096, 46137344, -96468992, 201326592, -419430400, 872415232, -1811939328, 3758096384, -7784628224, 16106127360
OFFSET
1,3
COMMENTS
The determinant of the distance matrix of a tree with vertex set {1,2,...,n}. The distance matrix is the n X n matrix in which the (i,j)-term is the number of edges in the unique path from vertex i to vertex j. [The matrix A in the definition is the distance matrix of the path-tree 1-2-...-n.]
Hankel transform of A100071. Also Hankel transform of C(2n-2,n-1)(-1)^(n-1). Inverse binomial transform of -n. - Paul Barry, Jan 11 2007
Pisano period lengths: 1, 1, 3, 1, 20, 3, 42, 1, 9, 20, 55, 3,156, 42, 60, 1,136, 9,171, 20, ... - R. J. Mathar, Aug 10 2012
LINKS
Emmanuel Briand, Luis Esquivias, Álvaro Gutiérrez, Adrián Lillo, and Mercedes Rosas, Determinant of the distance matrix of a tree, Proceedings of the 36th Conference on Formal Power Series and Algebraic Combinatorics (Bochum), Séminaire Lotharingien de Combinatoire 91B (2024) Article #29, 12 pp.
R. L. Graham and H. O. Pollak, On the addressing problem for loop switching, Bell System Tech. J., 50, 1971, 2495-2519.
Tanya Khovanova, Recursive Sequences
R. Merris, The distance spectrum of a tree, J. Graph Theory, 14, No. 3, 1990,365-369.
FORMULA
a(n) = (-1)^(n+1) * (n-1) * 2^(n-2) = (-1)^(n+1) * A001787(n-1).
G.f.: -x/(1+2x)^2. - Paul Barry, Jan 11 2007
a(n) = -4*a(n-1) - 4*a(n-2); a(1) = 0, a(1) = -1. - Philippe Deléham, Nov 03 2008
E.g.f.: -x*exp(-2*x). - Stefano Spezia, Sep 30 2022
MAPLE
seq((-1)^(n-1)*(n-1)*2^(n-2), n = 1 .. 31);
MATHEMATICA
Table[-(-1)^n*2^(n - 2)*(n - 1), {n, 1, 50}] (* Vladimir Joseph Stephan Orlovsky, Jun 10 2011 *)
LinearRecurrence[{-4, -4}, {0, -1}, 40] (* Harvey P. Dale, Apr 14 2014 *)
CoefficientList[Series[-x/(1 + 2 x)^2, {x, 0, 40}], x] (* Vincenzo Librandi, Apr 15 2014 *)
PROG
(PARI) a(n) = (-1)^n*(1-n)<<(n-2) \\ Charles R Greathouse IV, Sep 30 2022
CROSSREFS
Essentially the same as A001787.
KEYWORD
easy,sign
AUTHOR
Yuval Dekel (dekelyuval(AT)hotmail.com), Jul 21 2003
EXTENSIONS
More terms from Philippe Deléham, Nov 16 2008
STATUS
approved
Permanent of the n-th principal submatrix of A003057.
+10
18
1, 2, 17, 336, 12052, 685080, 56658660, 6428352000, 958532774976, 181800011433600, 42745508545320000, 12203347213269273600, 4158410247782904833280, 1667267950805177583582720, 776990110000329481864608000, 416483579190482716042690560000
OFFSET
0,2
COMMENTS
I have proved that for any odd prime p we have a(p) == p (mod p^2). - Zhi-Wei Sun, Aug 30, 2021
LINKS
Zhi-Wei Sun, Arithmetic properties of some permanents, arXiv:2108.07723 [math.GM], 2021.
FORMULA
From Vaclav Kotesovec, Dec 01 2016: (Start)
a(n) ~ c * d^n * (n!)^2 / sqrt(n), where d = A278300 = 2.455407482284127949... and c = 1.41510164826...
a(n) ~ c * d^n * n^(2*n + 1/2), where d = A278300/exp(2) = 0.332303267076220516... and c = 8.89134588451...
(End)
MAPLE
with(LinearAlgebra):
a:= n-> `if`(n=0, 1, Permanent(Matrix(n, (i, j)-> i+j))):
seq(a(n), n=0..16); # Alois P. Heinz, Nov 14 2016
MATHEMATICA
f[i_, j_] := i + j;
m[n_] := Table[f[i, j], {i, 1, n}, {j, 1, n}]
TableForm[m[8]] (* 8x8 principal submatrix *)
Flatten[Table[f[i, n + 1 - i],
{n, 1, 12}, {i, 1, n}]] (* A003057 *)
Permanent[m_] :=
With[{a = Array[x, Length[m]]},
Coefficient[Times @@ (m.a), Times @@ a]];
Table[Permanent[m[n]], {n, 1, 15}] (* A204249 *)
PROG
(PARI) {a(n) = matpermanent(matrix(n, n, i, j, i+j))}
for(n=0, 20, print1(a(n), ", ")) \\ Vaclav Kotesovec, Dec 21 2018
KEYWORD
nonn
AUTHOR
Clark Kimberling, Jan 14 2012
EXTENSIONS
a(0)=1 prepended and one more term added by Alois P. Heinz, Nov 14 2016
STATUS
approved
a(n) = permanent M_n where M_n is the n X n matrix m(i,j) = i^2 + j^2.
+10
10
1, 2, 41, 3176, 620964, 246796680, 174252885732, 199381727959680, 345875291854507584, 864860593764292790400, 2996169331694350840741440, 13929521390709644084719495680, 84659009841182126038701730464000, 658043094413184868424932006273344000
OFFSET
0,2
COMMENTS
From Zhi-Wei Sun, Aug 19 2021: (Start)
I have proved that a(n) == (-1)^(n-1)*2*n! (mod 2n+1) whenever 2n+1 is prime.
Conjecture 1: If 2n+1 is composite, then a(n) == 0 (mod 2n+1).
Conjecture 2: If p = 4n+1 is prime, then the sum of those Product_{j=1..2n}(j^2-f(j)^2)^{-1} with f over all the derangements of {1,...,2n} is congruent to 1/(n!)^2 modulo p. (End)
LINKS
Zhi-Wei Sun, Arithmetic properties of some permanents, arXiv:2108.07723 [math.GM], 2021.
FORMULA
a(n) ~ c * d^n * (n!)^3 / n, where d = 3.809076776112918119... and c = 1.07739642254738...
MAPLE
with(LinearAlgebra):
a:= n-> `if`(n=0, 1, Permanent(Matrix(n, (i, j)-> i^2+j^2))):
seq(a(n), n=0..16); # after Alois P. Heinz
MATHEMATICA
Flatten[{1, Table[Permanent[Table[i^2+j^2, {i, 1, n}, {j, 1, n}]], {n, 1, 15}]}]
PROG
(PARI) a(n)={matpermanent(matrix(n, n, i, j, i^2 + j^2))} \\ Andrew Howroyd, Aug 21 2018
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Nov 29 2016
STATUS
approved
a(n) is the permanent of the symmetric Toeplitz matrix of order n whose element (i,j) equals the |i-j|-th prime or 0 if i = j.
+10
9
1, 0, 4, 24, 529, 16100, 919037, 75568846, 9196890092, 1491628025318, 317579623173729, 86997150829931700, 29703399282858184713, 12512837775355494800500, 6397110844644502402189404, 3875565057688532269985283868, 2747710211567246171588232074225, 2265312860218073375019946448731300
OFFSET
0,3
COMMENTS
Conjecture: a(n) is the minimal permanent of an n X n symmetric Toeplitz matrix having 0 on the main diagonal and all the first n-1 primes off-diagonal. - Stefano Spezia, Jul 06 2024
EXAMPLE
a(4) = 529:
[0, 2, 3, 5]
[2, 0, 2, 3]
[3, 2, 0, 2]
[5, 3, 2, 0]
MATHEMATICA
a[n_]:=Permanent[Table[If[i == j, 0, Prime[Abs[i - j]]], {i, 1, n}, {j, 1, n}]]; Join[{1}, Array[a, 17]]
PROG
(PARI) a(n) = matpermanent(matrix(n, n, i, j, if (i==j, 0, prime(abs(i-j))))); \\ Michel Marcus, Jun 28 2024
CROSSREFS
Cf. A071079 (determinant), A085807, A306457, A318173.
KEYWORD
nonn
AUTHOR
Stefano Spezia, Jun 27 2024
STATUS
approved
a(n) = permanent M_n where M_n is the n X n matrix m(i,j) = (i+j)^2.
+10
7
1, 4, 145, 19016, 6176676, 4038562000, 4664347807268, 8698721212922496, 24535712762777208384, 99585504924929052560640, 559305193643176161735904320, 4211594966980674975033969246720, 41428564066728305721531962537124096, 520897493876353116313789796095643304960
OFFSET
0,2
LINKS
FORMULA
a(n) ~ c * d^n * (n!)^3 / n, where d = 6.14071825... and c = 1.79385445... - Vaclav Kotesovec, Aug 12 2021
MAPLE
with(LinearAlgebra):
a:= n-> `if`(n=0, 1, Permanent(Matrix(n, (i, j)-> (i+j)^2))):
seq(a(n), n=0..16); # Vaclav Kotesovec, Nov 29 2016, after Alois P. Heinz
MATHEMATICA
Flatten[{1, Table[Permanent[Table[(i+j)^2, {i, 1, n}, {j, 1, n}]], {n, 1, 15}]}]
PROG
(PARI) {a(n) = matpermanent(matrix(n, n, i, j, (i+j)^2))}
for(n=0, 20, print1(a(n), ", ")) \\ Vaclav Kotesovec, Aug 09 2021
CROSSREFS
KEYWORD
nonn
AUTHOR
Vaclav Kotesovec, Nov 29 2016
STATUS
approved
a(n) is the minimal determinant of an n X n symmetric Toeplitz matrix having 0 on the main diagonal and all the integers 1, 2, ..., n-1 off-diagonal.
+10
5
1, 0, -1, 4, -44, -946, -8281, -592100, -25369920, -511563816, -55400732937
OFFSET
0,4
EXAMPLE
a(5) = -946:
[0, 1, 4, 2, 3]
[1, 0, 1, 4, 2]
[4, 1, 0, 1, 4]
[2, 4, 1, 0, 1]
[3, 2, 4, 1, 0]
MATHEMATICA
a[0]=1; a[n_]:=Min[Table[Det[ToeplitzMatrix[Join[{0}, Part[Permutations[Range[n-1]], i]]]], {i, (n-1)!}]]; Array[a, 11, 0]
CROSSREFS
Cf. A085807 (minimal permanent), A374280 (maximal), A374281 (maximal absolute value), A374282 (minimal nonzero absolute value), A374283 (maximal permanent).
KEYWORD
sign,hard,more
AUTHOR
Stefano Spezia, Jul 02 2024
STATUS
approved
a(n) is the maximal determinant of an n X n symmetric Toeplitz matrix having 0 on the main diagonal and all the integers 1, 2, ..., n-1 off-diagonal.
+10
5
1, 0, -1, 8, 28, 282, 27495, 581268, 17344692, 1246207300, 33366771123
OFFSET
0,4
EXAMPLE
a(5) = 282:
[0, 3, 4, 2, 1]
[3, 0, 3, 4, 2]
[4, 3, 0, 3, 4]
[2, 4, 3, 0, 3]
[1, 2, 4, 3, 0]
MATHEMATICA
a[0]=1; a[n_]:=Max[Table[Det[ToeplitzMatrix[Join[{0}, Part[Permutations[Range[n-1]], i]]]], {i, (n-1)!}]]; Array[a, 11, 0]
CROSSREFS
Cf. A085807 (minimal permanent), A374279 (minimal), A374281 (maximal absolute value), A374282 (minimal nonzero absolute value), A374283 (maximal permanent).
KEYWORD
sign,hard,more
AUTHOR
Stefano Spezia, Jul 02 2024
STATUS
approved
a(n) is the maximal absolute value of the determinant of an n X n symmetric Toeplitz matrix having 0 on the main diagonal and all the integers 1, 2, ..., n-1 off-diagonal.
+10
5
1, 0, 1, 8, 44, 946, 27495, 592100, 25369920, 1246207300, 55400732937
OFFSET
0,4
FORMULA
a(n) = max(abs(A374279(n)), A374280(n)).
EXAMPLE
a(5) = 946:
[0, 1, 4, 2, 3]
[1, 0, 1, 4, 2]
[4, 1, 0, 1, 4]
[2, 4, 1, 0, 1]
[3, 2, 4, 1, 0]
MATHEMATICA
a[0]=1; a[n_]:=Max[Table[Abs[Det[ToeplitzMatrix[Join[{0}, Part[Permutations[Range[n-1]], i]]]]], {i, (n-1)!}]]; Array[a, 11, 0]
CROSSREFS
Cf. A085807 (minimal permanent), A374279 (minimal), A374280 (maximal), A374282 (minimal nonzero absolute value), A374283 (maximal permanent).
KEYWORD
nonn,hard,more
AUTHOR
Stefano Spezia, Jul 02 2024
STATUS
approved
a(n) is the minimal absolute value of the determinant of a nonsingular n X n symmetric Toeplitz matrix having 0 on the main diagonal and all the integers 1, 2, ..., n-1 off-diagonal.
+10
5
1, 4, 12, 2, 13, 16, 21, 4, 1
OFFSET
2,2
COMMENTS
The offset is 2 because for n = 1 the matrix is null, and hence, singular.
EXAMPLE
a(5) = 2:
[0, 4, 1, 2, 3]
[4, 0, 4, 1, 2]
[1, 4, 0, 4, 1]
[2, 1, 4, 0, 4]
[3, 2, 1, 4, 0]
MATHEMATICA
a[n_]:=Min[Select[Table[Abs[Det[ToeplitzMatrix[Join[{0}, Part[Permutations[Range[n-1]], i]]]]], {i, (n-1)!}], Positive]]; Array[a, 9, 2]
CROSSREFS
Cf. A085807 (minimal permanent), A374279 (minimal signed), A374280 (maximal signed), A374281 (maximal absolute value), A374283 (maximal permanent).
KEYWORD
nonn,hard,more
AUTHOR
Stefano Spezia, Jul 02 2024
STATUS
approved
a(n) is the determinant of the n X n symmetric matrix M(n) that is defined as M[i,j] = abs(i - j) if min(i, j) < max(i, j) <= 2*min(i, j), and otherwise 0.
+10
4
1, 0, -1, 0, 1, -4, 12, 64, -172, -1348, 3456, 34240, -87084, 370640, -872336, -22639616, 52307088, -181323568, 399580288, 23627011200, -51305628400, -686160247552, 1545932859328, 68098264912128, -155370174372864, 6326621032802304, -13829529077133312, -1087288396552040448
OFFSET
0,6
FORMULA
Sum_{i=1..n+1-k} M[i,i+k] = A173997(n, k) with 1 <= k <= floor((n + 1)/2).
Sum_{i=1..n} Sum_{j=1..n} M[i,j] = 2*A006918(n-1).
Sum_{i=1..n} Sum_{j=1..n} M[i,j]^2 = A350050(n+1).
EXAMPLE
a(8) = -172:
0, 1, 0, 0, 0, 0, 0, 0;
1, 0, 1, 2, 0, 0, 0, 0;
0, 1, 0, 1, 2, 3, 0, 0;
0, 2, 1, 0, 1, 2, 3, 4;
0, 0, 2, 1, 0, 1, 2, 3;
0, 0, 3, 2, 1, 0, 1, 2;
0, 0, 0, 3, 2, 1, 0, 1;
0, 0, 0, 4, 3, 2, 1, 0.
MATHEMATICA
Join[{1}, Table[Det[Table[If[Min[i, j]<Max[i, j]<=2Min[i, j], Abs[j-i], 0], {i, n}, {j, n}]], {n, 27}]]
PROG
(PARI) a(n) = matdet(matrix(n, n, i, j, if ((min(i, j) < max(i, j)) && (max(i, j) <= 2*min(i, j)), abs(i-j)))); \\ Michel Marcus, Apr 20 2022
(Python)
from sympy import Matrix
def A353452(n): return Matrix(n, n, lambda i, j: abs(i-j) if min(i, j)<max(i, j)<=(min(i, j)<<1)+1 else 0).det() # Chai Wah Wu, Aug 29 2023
CROSSREFS
Cf. A000982 (number of zero matrix elements), A003983, A006918, A007590 (number of positive matrix elements), A049581, A051125, A173997, A350050, A352967, A353453 (permanent).
KEYWORD
sign
AUTHOR
Stefano Spezia, Apr 19 2022
STATUS
approved

Search completed in 0.014 seconds