# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a278847 Showing 1-1 of 1 %I A278847 #37 Aug 19 2021 03:28:54 %S A278847 1,2,41,3176,620964,246796680,174252885732,199381727959680, %T A278847 345875291854507584,864860593764292790400,2996169331694350840741440, %U A278847 13929521390709644084719495680,84659009841182126038701730464000,658043094413184868424932006273344000 %N A278847 a(n) = permanent M_n where M_n is the n X n matrix m(i,j) = i^2 + j^2. %C A278847 From _Zhi-Wei Sun_, Aug 19 2021: (Start) %C A278847 I have proved that a(n) == (-1)^(n-1)*2*n! (mod 2n+1) whenever 2n+1 is prime. %C A278847 Conjecture 1: If 2n+1 is composite, then a(n) == 0 (mod 2n+1). %C A278847 Conjecture 2: If p = 4n+1 is prime, then the sum of those Product_{j=1..2n}(j^2-f(j)^2)^{-1} with f over all the derangements of {1,...,2n} is congruent to 1/(n!)^2 modulo p. (End) %H A278847 Vaclav Kotesovec, Table of n, a(n) for n = 0..36 %H A278847 Zhi-Wei Sun, Arithmetic properties of some permanents, arXiv:2108.07723 [math.GM], 2021. %F A278847 a(n) ~ c * d^n * (n!)^3 / n, where d = 3.809076776112918119... and c = 1.07739642254738... %p A278847 with(LinearAlgebra): %p A278847 a:= n-> `if`(n=0, 1, Permanent(Matrix(n, (i, j)-> i^2+j^2))): %p A278847 seq(a(n), n=0..16); # after _Alois P. Heinz_ %t A278847 Flatten[{1, Table[Permanent[Table[i^2+j^2, {i, 1, n}, {j, 1, n}]], {n, 1, 15}]}] %o A278847 (PARI) a(n)={matpermanent(matrix(n, n, i, j, i^2 + j^2))} \\ _Andrew Howroyd_, Aug 21 2018 %Y A278847 Cf. A005249, A085750, A085807, A204249, A278845, A278925, A278926, A346934, A346949. %K A278847 nonn %O A278847 0,2 %A A278847 _Vaclav Kotesovec_, Nov 29 2016 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE