[go: up one dir, main page]

login
Search: a064078 -id:a064078
     Sort: relevance | references | number | modified | created      Format: long | short | data
Numbers k such that A019320(k) is greater than A064078(k) and the latter is a prime or a prime power.
+20
1
18, 20, 21, 54, 147, 342, 602, 889, 258121
OFFSET
1,1
COMMENTS
The unique prime factor of A064078(k) is then a unique prime to base 2 (see A161509), but not a cyclotomic number.
Subsequence of A161508. In fact, subsequence of the set difference A161508 \ A072226.
In all known examples, A064078(k) is a prime. If A064078(k) was a prime power p^j with j>1, then p would be both a Wieferich prime (A001220) and a unique prime to base 2.
Subsequence of A093106 (the characterization of A093106 can be useful when searching for more terms).
Should this sequence be infinite?
LINKS
PROG
(PARI) for(n=1, +oo, c=polcyclo(n, 2); c % n < 2 && next(); c/=(c%n); ispseudoprime(if(ispower(c, , &b), b, c))&&print1(n, ", "))
KEYWORD
nonn,hard,more
AUTHOR
Jeppe Stig Nielsen, Sep 22 2020
STATUS
approved
a(n) is the least prime such that the multiplicative order of 2 mod a(n) equals n, or a(n)=1 if no such prime exists.
+10
18
1, 3, 7, 5, 31, 1, 127, 17, 73, 11, 23, 13, 8191, 43, 151, 257, 131071, 19, 524287, 41, 337, 683, 47, 241, 601, 2731, 262657, 29, 233, 331, 2147483647, 65537, 599479, 43691, 71, 37, 223, 174763, 79, 61681, 13367, 5419, 431, 397, 631, 2796203, 2351, 97, 4432676798593, 251, 103, 53, 6361, 87211
OFFSET
1,2
COMMENTS
If a(n) differs from 1, then a(n) is the minimal prime divisor of A064078(n);
a(n)=n+1 iff n+1 is prime from A001122; a(n)=2n+1 iff 2n+1 is prime from A115591.
If a(n) > 1 then a(n) is the index where n occurs first in A014664. - M. F. Hasler, Feb 21 2016
Bang's theorem (special case of Zsigmondy's theorem, see links): a(n)>1 for all n>6. - Jeppe Stig Nielsen, Aug 31 2020
LINKS
Will Edgington, Factored Mersenne Numbers [from Internet Archive Wayback Machine]
PROG
(PARI) A112927(n, f=factor(2^n-1)[, 1])=!for(i=1, #f, znorder(Mod(2, f[i]))==n&&return(f[i])) \\ Use the optional 2nd arg to give a list of pseudoprimes to try when factoring of 2^n-1 is too slow. You may try factor(2^n-1, 0)[, 1]. - M. F. Hasler, Feb 21 2016
CROSSREFS
KEYWORD
nonn
AUTHOR
Vladimir Shevelev, Aug 25 2008
STATUS
approved
Number of prime factors of cyclotomic(n,2), which is A019320(n), the value of the n-th cyclotomic polynomial evaluated at x=2.
+10
12
0, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 2, 1, 2, 2, 1, 2, 1, 2, 1, 1, 2, 3, 1, 1, 1, 1, 1, 2, 2, 2, 1, 2, 1, 2, 1, 3, 2, 2, 1, 3, 2, 1, 2, 3, 3, 3, 2, 3, 1, 2, 2, 2, 2, 1, 1, 2, 2, 1, 2, 2, 3, 1, 2, 3, 2, 3, 2, 2, 3, 1, 1, 3, 1, 3, 2, 2, 2, 1, 1, 2, 2, 1, 1, 3, 4, 1, 2, 3, 2, 2, 1, 3, 4
OFFSET
1,11
COMMENTS
The Mobius transform of this sequence yields A046051, the number of prime factors of Mersenne number 2^n-1.
The number of prime factors in the primitive part of 2^n-1. - T. D. Noe, Jul 19 2008
LINKS
Max Alekseyev, Table of n, a(n) for n = 1..1206 (first 500 term from T. D. Noe)
Eric Weisstein's World of Mathematics, Cyclotomic Polynomial
Eric Weisstein's World of Mathematics, Mobius Transform
EXAMPLE
a(11) = 2 because cyclotomic(11,2) = 2047, which has two factors: 23 and 89.
MATHEMATICA
Join[{0}, Table[Plus@@Transpose[FactorInteger[Cyclotomic[n, 2]]][[2]], {n, 2, 100}]]
PROG
(PARI) a(n) = #factor(polcyclo(n, 2))~; \\ Michel Marcus, Mar 06 2015
CROSSREFS
omega(Phi(n,x)): this sequence (x=2), A085028 (x=3), A085029 (x=4), A085030 (x=5), A085031 (x=6), A085032 (x=7), A085033 (x=8), A085034 (x=9), A085035 (x=10).
KEYWORD
nonn
AUTHOR
T. D. Noe, Jun 19 2003
STATUS
approved
Zsigmondy numbers for a = 4, b = 1: Zs(n, 4, 1) is the greatest divisor of 4^n - 1^n (A024036) that is relatively prime to 4^m - 1^m for all positive integers m < n.
+10
11
3, 5, 7, 17, 341, 13, 5461, 257, 1387, 41, 1398101, 241, 22369621, 3277, 49981, 65537, 5726623061, 4033, 91625968981, 61681, 1826203, 838861, 23456248059221, 65281, 1100586419201, 13421773, 22906579627, 15790321, 96076792050570581
OFFSET
1,1
COMMENTS
By Zsigmondy's theorem, the n-th Zsigmondy number for bases a and b is not 1 except in the three cases (1) a = 2, b = 1, n = 1, (2) a = 2, b = 1, n = 6, (3) n = 2 and a+b is a power of 2.
LINKS
K. Zsigmondy, Zur Theorie der Potenzreste, Monatshefte für Mathematik und Physik, 3 (1892) 265-284.
FORMULA
For even n, a(n) = A064078(2*n); for odd n, a(n) = A064078(n) * A064078(2*n). - Max Alekseyev, Apr 28 2022
KEYWORD
nonn
AUTHOR
Jens Voß, Sep 04 2001
EXTENSIONS
Corrected and extended by Vladeta Jovovic, Sep 05 2001
Definition corrected by Jerry Metzger, Nov 04 2009
STATUS
approved
Number of primitive prime factors of 2^n - 1.
+10
11
0, 1, 1, 1, 1, 0, 1, 1, 1, 1, 2, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 1, 2, 1, 2, 1, 1, 2, 3, 1, 1, 1, 1, 1, 2, 2, 2, 1, 2, 1, 2, 1, 3, 2, 2, 1, 3, 2, 1, 2, 3, 3, 3, 1, 3, 1, 2, 2, 2, 2, 1, 1, 2, 2, 1, 2, 2, 3, 1, 2, 3, 2, 3, 2, 2, 3, 1, 1, 3, 1, 3, 2, 2, 2, 1, 1, 2, 2, 1, 1, 3, 4, 1, 2, 3, 2, 2, 1, 3, 3, 2, 3, 2, 2, 3
OFFSET
1,11
COMMENTS
A prime factor of 2^n - 1 is called primitive if it does not divide 2^r - 1 for any r < n. Equivalently, p is a primitive prime factor of 2^n - 1 if ord(2,p) = n. Zsigmondy's theorem says that there is at least one primitive prime factor for n > 1, except for n=6. See A086252 for those n that have a record number of primitive prime factors.
Number of odd primes p such that A002326((p-1)/2) = n. Number of occurrences of number n in A014664. - Thomas Ordowski, Sep 12 2017
The prime factors are not counted with multiplicity, which matters for a(364)=4 and a(1755)=6. - Jeppe Stig Nielsen, Sep 01 2020
LINKS
Eric Weisstein's World of Mathematics, Zsigmondy Theorem
FORMULA
a(n) = Sum{d|n} mu(n/d) A046800(d), inverse Mobius transform of A046800.
a(n) <= A182590(n). - Thomas Ordowski, Sep 14 2017
a(n) = A001221(A064078(n)). - Thomas Ordowski, Oct 26 2017
EXAMPLE
a(11) = 2 because 2^11 - 1 = 23*89 and both 23 and 89 have order 11.
MATHEMATICA
Join[{0}, Table[cnt=0; f=Transpose[FactorInteger[2^n-1]][[1]]; Do[If[MultiplicativeOrder[2, f[[i]]]==n, cnt++ ], {i, Length[f]}]; cnt, {n, 2, 200}]]
PROG
(PARI) a(n) = sumdiv(n, d, moebius(n/d)*omega(2^d-1)); \\ Michel Marcus, Sep 12 2017
(PARI) a(n) = my(m=polcyclo(n, 2)); omega(m/gcd(m, n)) \\ Jeppe Stig Nielsen, Sep 01 2020
CROSSREFS
Cf. A046800, A046051 (number of prime factors, with repetition, of 2^n-1), A086252, A002588, A005420, A002184, A046801, A049093, A049094, A059499, A085021, A097406, A112927, A237043.
KEYWORD
hard,nonn
AUTHOR
T. D. Noe, Jul 14 2003
EXTENSIONS
Terms to a(500) in b-file from T. D. Noe, Nov 11 2010
Terms a(501)-a(1200) in b-file from Charles R Greathouse IV, Sep 14 2017
Terms a(1201)-a(1206) in b-file from Max Alekseyev, Sep 11 2022
STATUS
approved
Table T(n,k) in which n-th row lists prime factors of 2^n - 1 (n >= 2), without repetition.
+10
10
0, 1, 3, 7, 3, 5, 31, 3, 7, 127, 3, 5, 17, 7, 73, 3, 11, 31, 23, 89, 3, 5, 7, 13, 8191, 3, 43, 127, 7, 31, 151, 3, 5, 17, 257, 131071, 3, 7, 19, 73, 524287, 3, 5, 11, 31, 41, 7, 127, 337, 3, 23, 89, 683, 47, 178481, 3, 5, 7, 13, 17, 241
OFFSET
0,3
COMMENTS
For n > 1, the length of row n is A046800(n). - T. D. Noe, Aug 06 2007
REFERENCES
J. Brillhart et al., Factorizations of b^n +- 1. Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 2nd edition, 1985; and later supplements.
LINKS
T. D. Noe, Rows n=0..500 of triangle, flattened (derived from Brillhart et al.)
Joerg Arndt, Rows n=1..1200 of triangle when repetitions are included (derived from Brillhart et al.)
J. Brillhart et al., Factorizations of b^n +- 1, Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 3rd edition, 2002.
Jeroen Demeyer, Machine-readable Cunningham Tables [Broken link]
S. S. Wagstaff, Jr., The Cunningham Project
EXAMPLE
From Wolfdieter Lang, Sep 23 2017: (Start)
The irregular triangle T(n,k) begins for n >= 2:
n\k 1 2 3 4 5
2: 3
3: 7
4: 3 5
5: 31
6: 3 7
7: 127
8: 3 5 17
9: 7 73
10: 3 11 31
11: 23 89
12: 3 5 7 13
13: 8191
14: 3 43 127
15: 7 31 151
16: 3 5 17 257
17: 131071
18: 3 7 19 73
19: 524287
20: 3 5 11 31 41
... (End)
MATHEMATICA
Array[FactorInteger[2^# - 1][[All, 1]] &, 25, 0] (* Paolo Xausa, Apr 18 2024 *)
CROSSREFS
KEYWORD
nonn,tabf
STATUS
approved
Zsigmondy numbers for a = 7, b = 1: Zs(n, 7, 1) is the greatest divisor of 7^n - 1^n (A024075) that is relatively prime to 7^m - 1^m for all positive integers m < n.
+10
10
6, 1, 19, 25, 2801, 43, 137257, 1201, 39331, 2101, 329554457, 2353, 16148168401, 102943, 4956001, 2882401, 38771752331201, 117307, 1899815864228857, 1129901, 11898664849, 247165843, 4561457890013486057, 5762401, 79797014141614001
OFFSET
1,1
COMMENTS
By Zsigmondy's theorem, the n-th Zsigmondy number for bases a and b is not 1 except in the three cases (1) a = 2, b = 1, n = 1, (2) a = 2, b = 1, n = 6, (3) n = 2 and a+b is a power of 2.
LINKS
K. Zsigmondy, Zur Theorie der Potenzreste, Monatsh. f. Math. III. (1892) 265-284.
KEYWORD
nonn
AUTHOR
Jens Voß, Sep 04 2001
EXTENSIONS
More terms from Vladeta Jovovic, Sep 06 2001
Definition corrected by Jerry Metzger, Nov 04 2009
STATUS
approved
Number of divisors of 2^n - 1 that are relatively prime to 2^m - 1 for all 0 < m < n.
+10
9
1, 2, 2, 2, 2, 1, 2, 2, 2, 2, 4, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 2, 4, 2, 4, 2, 2, 4, 8, 2, 2, 2, 2, 2, 4, 4, 4, 2, 4, 2, 4, 2, 8, 4, 4, 2, 8, 4, 2, 4, 8, 8, 8, 2, 8, 2, 4, 4, 4, 4, 2, 2, 4, 4, 2, 4, 4, 8, 2, 4, 8, 4, 8, 4, 4, 8, 2, 2, 8, 2, 8, 4, 4, 4, 2, 2, 4, 4, 2, 2, 8, 16, 2, 4, 8, 4, 4, 2, 8, 8
OFFSET
1,2
COMMENTS
a(364) = 24 is the first term not a power of 2. - Jianing Song, Apr 29 2018
a(n) is the number of divisors of A064078(n). - Jianing Song, Apr 20 2019
LINKS
Jianing Song, Table of n, a(n) for n = 1..500 (Terms 1 through 250 from Reinhard Zumkeller)
Sam Wagstaff, Factorizations of 2^n-1, n odd, n<1200, Cunningham Project.
EXAMPLE
Divisors of 2^8-1 are {1, 3, 5, 15, 17, 51, 85, 255}, but only 1 and 17 are relatively prime to 2^m - 1 for all m < 8, thus a(8)=2.
MATHEMATICA
a = {1}; Do[ d = Divisors[2^n - 1]; l = Length[d]; c = 0; k = 1; While[ k < l + 1, If[ Union[ GCD[a, d[[k]] ]] == {1}, c++ ]; k++ ]; Print[c]; a = Union[ Flatten[ Append[a, Transpose[ FactorInteger[2^n - 1]][[ 1]] ]]], {n, 1, 100} ]
PROG
(Haskell)
a063982 n = a063982_list !! (n-1)
a063982_list = f [] $ tail a000225_list where
f us (v:vs) = (length ds) : f (v:us) vs where
ds = [d | d <- a027750_row v, all ((== 1). (gcd d)) us]
-- Reinhard Zumkeller, Jan 04 2013
(PARI) a(n) = {my(v = vector(n-1, k, 2^k-1), na = 0, nb); fordiv(2^n-1, d, nb = 0; for (k=1, n-1, if (gcd(d, v[k]) == 1, nb++, break); ); if (nb == n-1, na++); ); return (na); } \\ Michel Marcus, Apr 30 2018
CROSSREFS
Cf. A064078.
KEYWORD
nonn,nice
AUTHOR
Vladeta Jovovic, Sep 06 2001
EXTENSIONS
More terms from Robert G. Wilson v, Sep 10 2001
STATUS
approved
Zsigmondy numbers for a = 3, b = 1: Zs(n, 3, 1) is the greatest divisor of 3^n - 1^n (A024023) that is relatively prime to 3^m - 1^m for all positive integers m < n.
+10
9
2, 1, 13, 5, 121, 7, 1093, 41, 757, 61, 88573, 73, 797161, 547, 4561, 3281, 64570081, 703, 581130733, 1181, 368089, 44287, 47071589413, 6481, 3501192601, 398581, 387440173, 478297, 34315188682441, 8401, 308836698141973, 21523361
OFFSET
1,1
COMMENTS
By Zsigmondy's theorem, the n-th Zsigmondy number for bases a and b is not 1 except in the three cases (1) a = 2, b = 1, n = 1, (2) a = 2, b = 1, n = 6, (3) n = 2 and a+b is a power of 2.
LINKS
K. Zsigmondy, Zur Theorie der Potenzreste, Monatsh. f. Math. 3 (1892) 265-284.
KEYWORD
nonn
AUTHOR
Jens Voß, Sep 04 2001
EXTENSIONS
More terms from Vladeta Jovovic, Sep 06 2001
Definition corrected by Jerry Metzger, Nov 04 2009
STATUS
approved
Zsigmondy numbers for a = 5, b = 1: Zs(n, 5, 1) is the greatest divisor of 5^n - 1^n (A024049) that is relatively prime to 5^m - 1^m for all positive integers m < n.
+10
9
4, 3, 31, 13, 781, 7, 19531, 313, 15751, 521, 12207031, 601, 305175781, 13021, 315121, 195313, 190734863281, 5167, 4768371582031, 375601, 196890121, 8138021, 2980232238769531, 390001, 95397958987501, 203450521
OFFSET
1,1
COMMENTS
By Zsigmondy's theorem, the n-th Zsigmondy number for bases a and b is not 1 except in the three cases (1) a = 2, b = 1, n = 1, (2) a = 2, b = 1, n = 6, (3) n = 2 and a+b is a power of 2.
LINKS
K. Zsigmondy, Zur Theorie der Potenzreste, Monatsh. f. Math. 3 (1892) 265-284.
KEYWORD
nonn
AUTHOR
Jens Voß, Sep 04 2001
EXTENSIONS
More terms from Vladeta Jovovic, Sep 06 2001
Definition corrected by Jerry Metzger, Nov 04 2009
STATUS
approved

Search completed in 0.021 seconds