[go: up one dir, main page]

login
A046051
Number of prime factors of Mersenne number M(n) = 2^n - 1 (counted with multiplicity).
45
0, 1, 1, 2, 1, 3, 1, 3, 2, 3, 2, 5, 1, 3, 3, 4, 1, 6, 1, 6, 4, 4, 2, 7, 3, 3, 3, 6, 3, 7, 1, 5, 4, 3, 4, 10, 2, 3, 4, 8, 2, 8, 3, 7, 6, 4, 3, 10, 2, 7, 5, 7, 3, 9, 6, 8, 4, 6, 2, 13, 1, 3, 7, 7, 3, 9, 2, 7, 4, 9, 3, 14, 3, 5, 7, 7, 4, 8, 3, 10, 6, 5, 2, 14, 3, 5, 6, 10, 1, 13, 5, 9, 3, 6, 5, 13, 2, 5, 8
OFFSET
1,4
COMMENTS
Length of row n of A001265.
LINKS
Sean A. Irvine, Table of n, a(n) for n = 1..1206 (terms 1..500 from T. D. Noe)
J. Brillhart et al., Factorizations of b^n +- 1, Contemporary Mathematics, Vol. 22, Amer. Math. Soc., Providence, RI, 3rd edition, 2002.
Alex Kontorovich, Jeff Lagarias, On Toric Orbits in the Affine Sieve, arXiv:1808.03235 [math.NT], 2018.
S. S. Wagstaff, Jr., The Cunningham Project
Eric Weisstein's World of Mathematics, Mersenne Number
FORMULA
Mobius transform of A085021. - T. D. Noe, Jun 19 2003
a(n) = A001222(A000225(n)). - Michel Marcus, Jun 06 2019
EXAMPLE
a(4) = 2 because 2^4 - 1 = 15 = 3*5.
From Gus Wiseman, Jul 04 2019: (Start)
The sequence of Mersenne numbers together with their prime indices begins:
1: {}
3: {2}
7: {4}
15: {2,3}
31: {11}
63: {2,2,4}
127: {31}
255: {2,3,7}
511: {4,21}
1023: {2,5,11}
2047: {9,24}
4095: {2,2,3,4,6}
8191: {1028}
16383: {2,14,31}
32767: {4,11,36}
65535: {2,3,7,55}
131071: {12251}
262143: {2,2,2,4,8,21}
524287: {43390}
1048575: {2,3,3,5,11,13}
(End)
MATHEMATICA
a[q_] := Module[{x, n}, x=FactorInteger[2^n-1]; n=Length[x]; Sum[Table[x[i][2], {i, n}][j], {j, n}]]
a[n_Integer] := PrimeOmega[2^n - 1]; Table[a[n], {n, 200}] (* Vladimir Joseph Stephan Orlovsky, Jul 22 2011 *)
PROG
(PARI) a(n)=bigomega(2^n-1) \\ Charles R Greathouse IV, Apr 01 2013
CROSSREFS
bigomega(b^n-1): A057951 (b=10), A057952 (b=9), A057953 (b=8), A057954 (b=7), A057955 (b=6), A057956 (b=5), A057957 (b=4), A057958 (b=3), this sequence (b=2).
Sequence in context: A319149 A344462 A321887 * A025812 A263001 A109698
KEYWORD
nonn
STATUS
approved