[go: up one dir, main page]

login
Search: a059946 -id:a059946
     Sort: relevance | references | number | modified | created      Format: long | short | data
Triangle T(n,k) (n >= 2, k = 3..n+floor(n/2)) giving number of bicoverings of an n-set with k blocks.
+10
27
1, 4, 4, 13, 39, 25, 3, 40, 280, 472, 256, 40, 121, 1815, 6185, 7255, 3306, 535, 15, 364, 11284, 70700, 149660, 131876, 51640, 8456, 420, 1093, 68859, 759045, 2681063, 3961356, 2771685, 954213, 154637, 9730, 105, 3280, 416560, 7894992, 44659776, 103290096
OFFSET
2,2
REFERENCES
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 303, #40.
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, John Wiley and Sons, N.Y., 1983.
LINKS
L. Comtet, Birecouvrements et birevêtements d’un ensemble fini, Studia Sci. Math. Hungar 3 (1968): 137-152. [Annotated scanned copy. Warning: the table of v(n,k) has errors.]
FORMULA
E.g.f. for m-block bicoverings of an n-set is exp(-x-1/2*x^2*(exp(y)-1))*Sum_{i=0..inf} x^i/i!*exp(binomial(i, 2)*y).
T(n, k) = Sum{j=0..n} Stirling2(n, j) * A060052(j, k). - David Pasino, Sep 22 2016
EXAMPLE
T(2,3) = 1: 1|12|2.
T(3,3) = 4: 1|123|23, 12|13|23, 12|123|3, 123|13|2.
T(3,4) = 4: 1|12|23|3, 1|13|2|23, 1|123|2|3, 12|13|2|3.
Triangle T(n,k) begins:
: 1;
: 4, 4;
: 13, 39, 25, 3;
: 40, 280, 472, 256, 40;
: 121, 1815, 6185, 7255, 3306, 535, 15;
: 364, 11284, 70700, 149660, 131876, 51640, 8456, 420;
: 1093, 68859, 759045, 2681063, 3961356, 2771685, 954213, 154637, 9730, 105;
...
MATHEMATICA
nmax = 8; imax = 2*(nmax - 2); egf := E^(-x - 1/2*x^2*(E^y - 1))*Sum[(x^i/i!)*E^(Binomial[i, 2]*y), {i, 0, imax}]; fx = CoefficientList[ Series[ egf , {y, 0, imax}], y]*Range[0, imax]!; row[n_] := Drop[ CoefficientList[ Series[fx[[n + 1]], {x, 0, imax}], x], 3]; Table[ row[n], {n, 2, nmax}] // Flatten (* Jean-François Alcover, Sep 21 2012 *)
PROG
(PARI) \ps 22;
s = 8; pv = vector(s); for(n=1, s, pv[n]=round(polcoeff(f(x, y), n, y)*n!));
for(n=1, s, for(m=3, poldegree(pv[n], x), print1(polcoeff(pv[n], m), ", "))) \\ Gerald McGarvey, Dec 03 2009
CROSSREFS
Row sums are A002718.
Main diagonal gives A275517.
Right border gives A275521.
KEYWORD
tabf,nonn,nice
AUTHOR
N. J. A. Sloane, Feb 01 2001
EXTENSIONS
More terms and additional comments from Vladeta Jovovic, Feb 14 2001
a(37) corrected by Gerald McGarvey, Dec 03 2009
STATUS
approved
Number of 5-block ordered bicoverings of an unlabeled n-set.
+10
4
0, 0, 0, 0, 125, 722, 2565, 7180, 17335, 37750, 76093, 144340, 260590, 451440, 755040, 1224964, 1935050, 2985380, 4509590, 6683720, 9736835, 13963670, 19739575, 27538060, 37951265, 51713706, 69729675, 93104700, 123181500
OFFSET
0,5
LINKS
Index entries for linear recurrences with constant coefficients, signature (10,-45,120,-210,252,-210,120,-45,10,-1).
FORMULA
a(n) = binomial(n+9, 9) - 5*binomial(n+5, 5) - 10*binomial(n+3, 3) + 20*binomial(n+2, 2) + 30*binomial(n+1, 1) - 60*binomial(n, 0) + 24*binomial(n-1, -1).
G.f.: y^4*(-528*y + 125 + 970*y^2 - 980*y^3 + 570*y^4 - 180*y^5 + 24*y^6)/(-1 + y)^10.
E.g.f. for k-block ordered bicoverings of an unlabeled n-set is exp(-x - x^2/2*y/(1 - y))*Sum_{k>=0} 1/(1 - y)^binomial(k, 2)*x^k/k!.
a(n) = (n-1) *(n-2) *(n-3) *(n^6 + 51*n^5 + 1165*n^4 + 15885*n^3 + 130954*n^2 + 660504*n + 1451520)/ 362880, n > 0. - R. J. Mathar, Aug 10 2017
PROG
(PARI) a(n) = if(n<1, 0, binomial(n + 9, 9) - 5*binomial(n + 5, 5) - 10*binomial(n + 3, 3) + 20*binomial(n + 2, 2) + 30*binomial(n + 1, 1) - 60*binomial(n, 0) + 24*binomial(n - 1, -1)) \\ Harry J. Smith, Jul 01 2009
CROSSREFS
Column k=5 of A060092.
KEYWORD
nonn,easy
AUTHOR
Vladeta Jovovic, Feb 26 2001
STATUS
approved

Search completed in 0.005 seconds