[go: up one dir, main page]

login
Search: a052216 -id:a052216
     Sort: relevance | references | number | modified | created      Format: long | short | data
Numbers n such that the sum of digits of 3n equals 6.
+10
8
2, 5, 8, 11, 14, 17, 20, 35, 38, 41, 44, 47, 50, 68, 71, 74, 77, 80, 101, 104, 107, 110, 134, 137, 140, 167, 170, 200, 335, 338, 341, 344, 347, 350, 368, 371, 374, 377, 380, 401, 404, 407, 410, 434, 437, 440, 467, 470, 500, 668, 671, 674, 677, 680, 701
OFFSET
1,1
COMMENTS
Inspired by A088405 = A052217/3 and A279769 (the analog for 9).
MATHEMATICA
Select[Range@ 720, Total@ IntegerDigits[3 #] == 6 &] (* Michael De Vlieger, Dec 23 2016 *)
PROG
(PARI) select( is(n)=sumdigits(3*n)==6, [1..999])
CROSSREFS
Cf. A007953 (digital sum), A279772 (sumdigits(2n) = 4), A279774 (sumdigits(4n) = 8), A279775 (sumdigits(5n) = 10), A279776 (sumdigits(6n) = 12), A279770 (sumdigits(7n) = 14), A279768 (sumdigits(8n) = 16), A279769 (sumdigits(9n) = 18), A279777 (sumdigits(9n) = 27).
Digital sum of m*n equals m: A088404 = A069537/2, A088405 = A052217/3, A088406 = A063997/4, A088407 = A069540/5, A088408 = A062768/6, A088409 = A063416/7, A088410 = A069543/8.
Cf. A005349 (Niven or Harshad numbers), A245062 (arranged in rows by digit sums).
Numbers with given digital sum: A011557 (1), A052216 (2), A052217 (3), A052218 (4), A052219 (5), A052220 (6), A052221 (7), A052222 (8), A052223 (9), A052224 (10), A166311 (11), A235151 (12), A143164 (13), A235225 (14), A235226 (15), A235227 (16), A166370 (17), A235228 (18), A166459 (19), A235229 (20).
KEYWORD
nonn,easy,base
AUTHOR
M. F. Hasler, Dec 23 2016
STATUS
approved
Numbers n such that the sum of digits of 4n equals 8.
+10
8
2, 11, 20, 29, 38, 56, 65, 83, 101, 110, 128, 155, 200, 254, 263, 281, 290, 308, 326, 335, 353, 380, 425, 506, 515, 533, 551, 560, 578, 605, 650, 758, 776, 785, 803, 830, 875, 1001, 1010, 1028, 1055, 1100, 1253, 1280, 1325, 1505, 1550, 1775
OFFSET
1,1
COMMENTS
Inspired by A088406 = A063997/4 and A279769 (the analog for 9).
MATHEMATICA
Select[Range@ 2000, Total@ IntegerDigits[4 #] == 8 &] (* Michael De Vlieger, Dec 23 2016 *)
PROG
(PARI) select( is(n)=sumdigits(4*n)==8, [1..1999])
CROSSREFS
Cf. A007953 (digital sum), A279772 (sumdigits(2n) = 4), A279773 (sumdigits(3n) = 6), A279775 (sumdigits(5n) = 10), A279776 (sumdigits(6n) = 12), A279770 (sumdigits(7n) = 14), A279768 (sumdigits(8n) = 16), A279769 (sumdigits(9n) = 18), A279777 (sumdigits(9n) = 27).
Digital sum of m*n equals m: A088404 = A069537/2, A088405 = A052217/3, A088406 = A063997/4, A088407 = A069540/5, A088408 = A062768/6, A088409 = A063416/7, A088410 = A069543/8.
Cf. A005349 (Niven or Harshad numbers), A245062 (arranged in rows by digit sums).
Numbers with given digital sum: A011557 (1), A052216 (2), A052217 (3), A052218 (4), A052219 (5), A052220 (6), A052221 (7), A052222 (8), A052223 (9), A052224 (10), A166311 (11), A235151 (12), A143164 (13), A235225 (14), A235226 (15), A235227 (16), A166370 (17), A235228 (18), A166459 (19), A235229 (20).
KEYWORD
nonn,easy,base
AUTHOR
M. F. Hasler, Dec 23 2016
STATUS
approved
Numbers n such that the sum of digits of 6n equals 12.
+10
8
8, 11, 14, 23, 26, 29, 32, 38, 41, 44, 47, 53, 56, 59, 62, 65, 68, 71, 74, 77, 80, 86, 89, 92, 95, 101, 104, 107, 110, 119, 122, 125, 134, 137, 140, 152, 155, 173, 176, 179, 182, 188, 191, 194, 197, 203, 206, 209, 212, 215, 218, 221, 224, 227, 230, 236
OFFSET
1,1
COMMENTS
Inspired by A088408 = A062768/6 and A279769 (the analog for 9).
MATHEMATICA
Select[Range@ 240, Total@ IntegerDigits[6 #] == 12 &] (* Michael De Vlieger, Dec 23 2016 *)
PROG
(PARI) is(n)=sumdigits(6*n)==12
CROSSREFS
Cf. A007953 (digital sum), A279772 (sumdigits(2n) = 4), A279773 (sumdigits(3n) = 6), A279774 (sumdigits(4n) = 8), A279775 (sumdigits(5n) = 10), A279770 (sumdigits(7n) = 14), A279768 (sumdigits(8n) = 16), A279769 (sumdigits(9n) = 18), A279777 (sumdigits(9n) = 27).
Digital sum of m*n equals m: A088404 = A069537/2, A088405 = A052217/3, A088406 = A063997/4, A088407 = A069540/5, A088408 = A062768/6, A088409 = A063416/7, A088410 = A069543/8.
Cf. A005349 (Niven or Harshad numbers), A245062 (arranged in rows by digit sums).
Numbers with given digital sum: A011557 (1), A052216 (2), A052217 (3), A052218 (4), A052219 (5), A052220 (6), A052221 (7), A052222 (8), A052223 (9), A052224 (10), A166311 (11), A235151 (12), A143164 (13), A235225 (14), A235226 (15), A235227 (16), A166370 (17), A235228 (18), A166459 (19), A235229 (20).
KEYWORD
nonn,easy,base
AUTHOR
M. F. Hasler, Dec 23 2016
STATUS
approved
Sums of two powers of 5.
+10
7
2, 6, 10, 26, 30, 50, 126, 130, 150, 250, 626, 630, 650, 750, 1250, 3126, 3130, 3150, 3250, 3750, 6250, 15626, 15630, 15650, 15750, 16250, 18750, 31250, 78126, 78130, 78150, 78250, 78750, 81250, 93750, 156250, 390626, 390630, 390650, 390750, 391250, 393750
OFFSET
0,1
LINKS
Michael Penn, Fives and squares., YouTube video, 2021.
FORMULA
a(n) = 5^(n-trinv(n))+5^trinv(n), where trinv(n) = floor((1+sqrt(1+8*n))/2) = A002262(n) and n-trinv(n) = A003056(n).
Regarded as a triangle T(n, k) = 5^n + 5^k, so as a sequence a(n) = 5^A002262(n) + 5^A003056(n).
MATHEMATICA
t = 5^Range[0, 9]; Select[Union[Flatten[Table[i + j, {i, t}, {j, t}]]], # <= t[[-1]] + 1 &] (* T. D. Noe, Oct 09 2011 *)
Total/@Tuples[5^Range[0, 9], 2]//Union (* Harvey P. Dale, Jan 29 2017 *)
CROSSREFS
Cf. A052216.
KEYWORD
nonn,easy,tabl
AUTHOR
Henry Bottomley, Jun 22 2000
STATUS
approved
Sums of two powers of 7.
+10
6
2, 8, 14, 50, 56, 98, 344, 350, 392, 686, 2402, 2408, 2450, 2744, 4802, 16808, 16814, 16856, 17150, 19208, 33614, 117650, 117656, 117698, 117992, 120050, 134456, 235298, 823544, 823550, 823592, 823886, 825944, 840350, 941192, 1647086, 5764802, 5764808
OFFSET
0,1
FORMULA
a(n) = 7^(n-trinv(n))+7^trinv(n), where trinv(n) = floor((1+sqrt(1+8*n))/2) = A002262(n) and n-trinv(n) = A003056(n)
Regarded as a triangle T(n, k) = 7^n + 7^k, so as a sequence a(n) = 7^A002262(n) + 7^A003056(n).
MATHEMATICA
t = 7^Range[0, 9]; Select[Union[Flatten[Table[i + j, {i, t}, {j, t}]]], # <= t[[-1]] + 1 &] (* T. D. Noe, Oct 09 2011 *)
Total/@Tuples[7^Range[0, 10], 2]//Union (* Harvey P. Dale, Dec 31 2017 *)
CROSSREFS
Cf. A052216.
Equals 2*A073218.
KEYWORD
easy,nonn,tabl
AUTHOR
Henry Bottomley, Jun 22 2000
STATUS
approved
Sums of two powers of 4.
+10
5
2, 5, 8, 17, 20, 32, 65, 68, 80, 128, 257, 260, 272, 320, 512, 1025, 1028, 1040, 1088, 1280, 2048, 4097, 4100, 4112, 4160, 4352, 5120, 8192, 16385, 16388, 16400, 16448, 16640, 17408, 20480, 32768, 65537, 65540, 65552, 65600, 65792, 66560, 69632, 81920, 131072
OFFSET
0,1
FORMULA
a(n) = 4^(n-trinv(n))+4^trinv(n), where trinv(n) = floor((1+sqrt(1+8*n))/2) = A002262(n) and n-trinv(n) = A003056(n).
Regarded as a triangle T(n, k) = 4^n + 4^k, so as a sequence a(n) = 4^A002262(n) + 4^A003056(n).
MATHEMATICA
t = 4^Range[0, 9]; Select[Union[Flatten[Table[i + j, {i, t}, {j, t}]]], # <= t[[-1]] + 1 &] (* T. D. Noe, Oct 09 2011 *)
Union[Total/@Tuples[4^Range[0, 9], 2]] (* Harvey P. Dale, Mar 25 2012 *)
CROSSREFS
Cf. A052216.
KEYWORD
easy,nonn,tabl
AUTHOR
Henry Bottomley, Jun 22 2000
STATUS
approved
Sums of two powers of 6.
+10
5
2, 7, 12, 37, 42, 72, 217, 222, 252, 432, 1297, 1302, 1332, 1512, 2592, 7777, 7782, 7812, 7992, 9072, 15552, 46657, 46662, 46692, 46872, 47952, 54432, 93312, 279937, 279942, 279972, 280152, 281232, 287712, 326592, 559872, 1679617, 1679622, 1679652, 1679832
OFFSET
0,1
FORMULA
a(n) = 6^(n-trinv(n))+6^trinv(n), where trinv(n) = floor((1+sqrt(1+8*n))/2) = A002262(n) and n-trinv(n) = A003056(n)
Regarded as a triangle T(n, k) = 6^n + 6^k, so as a sequence a(n) = 6^A002262(n) + 6^A003056(n).
MATHEMATICA
t = 6^Range[0, 9]; Select[Union[Flatten[Table[i + j, {i, t}, {j, t}]]], # <= t[[-1]] + 1 &] (* T. D. Noe, Oct 09 2011 *)
CROSSREFS
Cf. A052216.
KEYWORD
easy,nonn,tabl
AUTHOR
Henry Bottomley, Jun 22 2000
STATUS
approved
Sums of two powers of 8.
+10
5
2, 9, 16, 65, 72, 128, 513, 520, 576, 1024, 4097, 4104, 4160, 4608, 8192, 32769, 32776, 32832, 33280, 36864, 65536, 262145, 262152, 262208, 262656, 266240, 294912, 524288, 2097153, 2097160, 2097216, 2097664, 2101248, 2129920, 2359296, 4194304, 16777217
OFFSET
0,1
FORMULA
a(n) = 8^(n-trinv(n))+8^trinv(n), where trinv(n) = floor((1+sqrt(1+8*n))/2) = A002262(n) and n-trinv(n) = A003056(n)
Regarded as a triangle T(n, k) = 8^n + 8^k, so as a sequence a(n) = 8^A002262(n) + 8^A003056(n).
MATHEMATICA
Union[Total/@Tuples[8^Range[0, 10], {2}]] (* Harvey P. Dale, Mar 13 2011 *)
PROG
(Python)
def valuation(n, b):
v = 0
while n > 1: n //= b; v += 1
return v
def aupto(lim):
pows8 = [8**i for i in range(valuation(lim-1, 8) + 1)]
sum_pows8 = sorted([a+b for i, a in enumerate(pows8) for b in pows8[i:]])
return [s for s in sum_pows8 if s <= lim]
print(aupto(16777217)) # Michael S. Branicky, Feb 09 2021
CROSSREFS
Cf. A052216.
KEYWORD
easy,nonn,tabl
AUTHOR
Henry Bottomley, Jun 22 2000
STATUS
approved
Sums of two powers of 9.
+10
5
2, 10, 18, 82, 90, 162, 730, 738, 810, 1458, 6562, 6570, 6642, 7290, 13122, 59050, 59058, 59130, 59778, 65610, 118098, 531442, 531450, 531522, 532170, 538002, 590490, 1062882, 4782970, 4782978, 4783050, 4783698, 4789530, 4842018, 5314410, 9565938, 43046722
OFFSET
0,1
FORMULA
a(n) = 9^(n-trinv(n))+9^trinv(n), where trinv(n) = floor((1+sqrt(1+8*n))/2) = A002262(n) and n-trinv(n) = A003056(n)
Regarded as a triangle T(n, k) = 9^n + 9^k, so as a sequence a(n) = 9^A002262(n) + 9^A003056(n).
MATHEMATICA
t = 9^Range[0, 9]; Select[Union[Flatten[Table[i + j, {i, t}, {j, t}]]], # <= t[[-1]] + 1 &] (* T. D. Noe, Oct 09 2011 *)
Total/@Tuples[9^Range[0, 10], 2]//Union (* Harvey P. Dale, Jul 03 2019 *)
PROG
(Python)
def valuation(n, b):
v = 0
while n > 1: n //= b; v += 1
return v
def aupto(lim):
pows = [9**i for i in range(valuation(lim-1, 9) + 1)]
sum_pows = sorted([a+b for i, a in enumerate(pows) for b in pows[i:]])
return [s for s in sum_pows if s <= lim]
print(aupto(43046722)) # Michael S. Branicky, Feb 10 2021
CROSSREFS
KEYWORD
easy,nonn,tabl
AUTHOR
Henry Bottomley, Jun 22 2000
STATUS
approved
Sums of two powers of 16.
+10
5
2, 17, 32, 257, 272, 512, 4097, 4112, 4352, 8192, 65537, 65552, 65792, 69632, 131072, 1048577, 1048592, 1048832, 1052672, 1114112, 2097152, 16777217, 16777232, 16777472, 16781312, 16842752, 17825792, 33554432, 268435457
OFFSET
1,1
LINKS
FORMULA
a(n) = 16^(n-trinv(n))+16^trinv(n), where trinv(n) = floor((1+sqrt(1+8*n))/2) = A002262(n) and n-trinv(n) = A003056(n).
Regarded as a triangle T(n, k)=16^n+16^k, so as a sequence a(n) =16^A002262(n)+16^A003056(n).
EXAMPLE
a(4) = 272 = 16^2+16^1.
MAPLE
A055261:= proc(n)
local p1, p2;
p1:= floor((sqrt(8*n-7)-1)/2);
p2:= n - 1 - p1*(p1+1)/2;
16^p1 + 16^p2
end proc; # Robert Israel, Apr 07 2014
CROSSREFS
Cf. A052216.
KEYWORD
base,easy,nonn,tabl
AUTHOR
Henry Bottomley, Jun 22 2000
STATUS
approved

Search completed in 0.035 seconds