Displaying 11-20 of 54 results found.
Numbers whose sum of digits is 6.
+10
34
6, 15, 24, 33, 42, 51, 60, 105, 114, 123, 132, 141, 150, 204, 213, 222, 231, 240, 303, 312, 321, 330, 402, 411, 420, 501, 510, 600, 1005, 1014, 1023, 1032, 1041, 1050, 1104, 1113, 1122, 1131, 1140, 1203, 1212, 1221, 1230, 1302, 1311, 1320, 1401, 1410
MATHEMATICA
Select[Range[10^4], Total[IntegerDigits[#]] == 6 &] (* Vincenzo Librandi, Mar 07 2013 *)
PROG
(Haskell)
a052220 n = a052220_list !! (n-1)
a052220_list = filter ((== 6) . a007953) [0..]
(Python)
from sympy.utilities.iterables import multiset_permutations
def auptodigs(maxdigits):
alst = []
for d in range(1, maxdigits+1):
digset = "0"*(d-1) + "11111122233456"
for p in multiset_permutations(digset, d):
if p[0] != '0' and sum(map(int, p)) == 6:
alst.append(int("".join(p)))
return alst
CROSSREFS
Cf. A011557 (1), A052216 (2), A052217 (3), A052218 (4), A052219 (5), A052221 (7), A052222 (8), A052223 (9), A052224 (10), A166311 (11), A235151 (12), A143164 (13), A235225(14), A235226 (15), A235227 (16), A166370 (17), A235228 (18), A166459 (19), A235229 (20).
Numbers whose sum of digits is 19.
+10
34
199, 289, 298, 379, 388, 397, 469, 478, 487, 496, 559, 568, 577, 586, 595, 649, 658, 667, 676, 685, 694, 739, 748, 757, 766, 775, 784, 793, 829, 838, 847, 856, 865, 874, 883, 892, 919, 928, 937, 946, 955, 964, 973, 982, 991, 1099, 1189, 1198, 1279, 1288
MATHEMATICA
Select[Range[1500], Total[IntegerDigits[#]]==19&] (* Harvey P. Dale, Jul 19 2011 *)
PROG
(Haskell)
a166459 n = a166459_list !! (n-1)
a166459_list = filter ((== 19) . a007953) [0..]
CROSSREFS
Cf. A011557 (1), A052216 (2), A052217 (3), A052218 (4), A052219 (5), A052220 (6), A052221 (7), A052222 (8), A052223 (9), A052224 (10), A166311 (11), A235151 (12), A143164 (13), A235225(14), A235226 (15), A235227 (16), A166370 (17), A235228 (18), A235229 (20).
Numbers with digitsum 13, in increasing order.
+10
33
49, 58, 67, 76, 85, 94, 139, 148, 157, 166, 175, 184, 193, 229, 238, 247, 256, 265, 274, 283, 292, 319, 328, 337, 346, 355, 364, 373, 382, 391, 409, 418, 427, 436, 445, 454, 463, 472, 481, 490, 508, 517, 526, 535, 544, 553, 562, 571, 580, 607, 616, 625, 634, 643, 652
COMMENTS
If 13 is considered as an 'unlucky' number: the 'unlucky years'.
REFERENCES
The Guardian Weekly, July 25-31, 2008, p.39 puzzles 5., p31.
FORMULA
digitsum(a(n))=13, ordered increasingly.
EXAMPLE
2029 is the next 'unlucky year'. Solution to the guardian weekly puzzle.
a(10^ 1) = 166
a(10^ 2) = 1309
a(10^ 3) = 21370
a(10^ 4) = 1100254
a(10^ 5) = 111032122
a(10^ 6) = 30611101000
a(10^ 7) = 40100300100301
a(10^ 8) = 200011001012211010
a(10^ 9) = 10001220000100012002100
MATHEMATICA
f[n_] := Rest@ Select[Range@ n, NestWhile[Plus @@ IntegerDigits[#] &, #, # > 14 &] == 13 &]; f@ 652 (* Michael De Vlieger, Feb 03 2015 *)
Select[Range[700], Total[IntegerDigits[#]]==13&] (* Harvey P. Dale, Oct 11 2017 *)
PROG
(Haskell)
a143164 n = a143164_list !! (n-1)
a143164_list = filter ((== 13) . a007953) [0..]
(PARI)
\\This algorithm needs a modified binomial.
C(n, k)=if(n>=k, binomial(n, k), 0)
\\ways to roll s-q with q dice having sides 0 through n - 1.
b(s, q, n)=if(s<=q*(n-1), s+=q; sum(i=0, q-1, (-1)^i*C(q, i)*C(s-1-n*i, q-1)), 0)
\\main algorithm
a(n) = {my(q); q = 2; while(b(13, q, 10) < n, q++); q--; s = 13; os = 13; r=0; while(q, if(b(s, q, 10) < n, n-=b(s, q, 10); s--, r+=(os-s)*10^(q); os = s; q--)); r+= s; r}
\\inverse
inv(n)={r = 1; v=digits(n); l=v[#v]; forstep(i = #v-1, 1, -1, for(j=1, v[i], r+=b(l+j, #v-i, 10)); l+=v[i]); r} \\ David A. Corneth, Jan 31 2015
(PARI) transform(n, b)=my(d=digits(n), nd=#d, v=vector(b, i, [i\10, b-(b+1-i)\10]), k); v[b][2]=d[1]; v
list(lim)=my(v=List(), d=transform(lim\=1, 13)); forvec(u=transform(lim\1, 13), if(u[4]<u[10] || (u[1]<u[10] && u[2]<u[11] && u[3]<u[12] && u[4]<u[13]), my(s=sum(i=1, 13, 10^u[i])); if(s<=lim, listput(v, s))), 1); Set(v) \\ Charles R Greathouse IV, May 30 2019
CROSSREFS
Cf. A011557 (1), A052216 (2), A052217 (3), A052218 (4), A052219 (5), A052220 (6), A052221 (7), A052222 (8), A052223 (9), A052224 (10), A166311 (11), A235151 (12), A235225(14), A235226 (15), A235227 (16), A166370 (17), A235228 (18), A166459 (19), A235229 (20).
Numbers whose sum of digits is 12.
+10
32
39, 48, 57, 66, 75, 84, 93, 129, 138, 147, 156, 165, 174, 183, 192, 219, 228, 237, 246, 255, 264, 273, 282, 291, 309, 318, 327, 336, 345, 354, 363, 372, 381, 390, 408, 417, 426, 435, 444, 453, 462, 471, 480, 507, 516, 525, 534, 543, 552, 561, 570, 606
MATHEMATICA
Select[Range[2000], Total[IntegerDigits[#]]==12&]
PROG
(Magma) [n: n in [1..1000] | &+Intseq(n) eq 12];
(Haskell)
a235151 n = a235151_list !! (n-1)
a235151_list = filter ((== 12) . a007953) [0..]
CROSSREFS
Cf. A011557 (1), A052216 (2), A052217 (3), A052218 (4), A052219 (5), A052220 (6), A052221 (7), A052222 (8), A052223 (9), A052224 (10), A166311 (11), A143164 (13), A235225(14), A235226 (15), A235227 (16), A166370 (17), A235228 (18), A166459 (19), A235229 (20).
Numbers whose sum of digits is 16.
+10
32
79, 88, 97, 169, 178, 187, 196, 259, 268, 277, 286, 295, 349, 358, 367, 376, 385, 394, 439, 448, 457, 466, 475, 484, 493, 529, 538, 547, 556, 565, 574, 583, 592, 619, 628, 637, 646, 655, 664, 673, 682, 691, 709, 718, 727, 736, 745, 754, 763, 772, 781, 790
MATHEMATICA
Select[Range[1000], Total[IntegerDigits[#]]==16 &]
PROG
(Magma) [n: n in [1..1000] | &+Intseq(n) eq 16];
(Haskell)
a235227 n = a235227_list !! (n-1)
a235227_list = filter ((== 16) . a007953) [0..]
CROSSREFS
Cf. A011557 (1), A052216 (2), A052217 (3), A052218 (4), A052219 (5), A052220 (6), A052221 (7), A052222 (8), A052223 (9), A052224 (10), A166311 (11), A235151 (12), A143164 (13), A235225(14), A235226 (15), A166370 (17), A235228 (18), A166459 (19), A235229 (20).
Numbers whose sum of digits is 18.
+10
32
99, 189, 198, 279, 288, 297, 369, 378, 387, 396, 459, 468, 477, 486, 495, 549, 558, 567, 576, 585, 594, 639, 648, 657, 666, 675, 684, 693, 729, 738, 747, 756, 765, 774, 783, 792, 819, 828, 837, 846, 855, 864, 873, 882, 891, 909, 918, 927, 936, 945, 954, 963
MATHEMATICA
Select[Range[1000], Total[IntegerDigits[#]] == 18 &]
PROG
(Magma) [n: n in [1..1000] | &+Intseq(n) eq 18];
(Haskell)
a235228 n = a235228_list !! (n-1)
a235228_list = filter ((== 18) . a007953) [0..]
CROSSREFS
Cf. A011557 (1), A052216 (2), A052217 (3), A052218 (4), A052219 (5), A052220 (6), A052221 (7), A052222 (8), A052223 (9), A052224 (10), A166311 (11), A235151 (12), A143164 (13), A235225(14), A235226 (15), A235227 (16), A166370 (17), A166459 (19), A235229 (20).
Numbers whose sum of digits is 17.
+10
31
89, 98, 179, 188, 197, 269, 278, 287, 296, 359, 368, 377, 386, 395, 449, 458, 467, 476, 485, 494, 539, 548, 557, 566, 575, 584, 593, 629, 638, 647, 656, 665, 674, 683, 692, 719, 728, 737, 746, 755, 764, 773, 782, 791, 809, 818, 827, 836, 845, 854, 863, 872
MATHEMATICA
Select[Range[900], Total[IntegerDigits[#]] == 17&] (* Vincenzo Librandi, Mar 07 2013 *)
PROG
(Haskell)
a166370 n = a166370_list !! (n-1)
a166370_list = filter ((== 17) . a007953) [0..]
CROSSREFS
Cf. A011557 (1), A052216 (2), A052217 (3), A052218 (4), A052219 (5), A052220 (6), A052221 (7), A052222 (8), A052223 (9), A052224 (10), A166311 (11), A235151 (12), A143164 (13), A235225(14), A235226 (15), A235227 (16), A235228 (18), A166459 (19), A235229 (20).
Numbers whose sum of digits is 14.
+10
31
59, 68, 77, 86, 95, 149, 158, 167, 176, 185, 194, 239, 248, 257, 266, 275, 284, 293, 329, 338, 347, 356, 365, 374, 383, 392, 419, 428, 437, 446, 455, 464, 473, 482, 491, 509, 518, 527, 536, 545, 554, 563, 572, 581, 590, 608, 617, 626, 635, 644, 653, 662
MATHEMATICA
Select[Range[1000], Total[IntegerDigits[#]] == 14 &]
PROG
(Magma) [n: n in [1..1000] | &+Intseq(n) eq 14];
(Haskell)
a235225 n = a235225_list !! (n-1)
a235225_list = filter ((== 14) . a007953) [0..]
CROSSREFS
Cf. A011557 (1), A052216 (2), A052217 (3), A052218 (4), A052219 (5), A052220 (6), A052221 (7), A052222 (8), A052223 (9), A052224 (10), A166311 (11), A235151 (12), A143164 (13), A235226 (15), A235227 (16), A166370 (17), A235228 (18), A166459 (19), A235229 (20).
Numbers whose sum of digits is 20.
+10
31
299, 389, 398, 479, 488, 497, 569, 578, 587, 596, 659, 668, 677, 686, 695, 749, 758, 767, 776, 785, 794, 839, 848, 857, 866, 875, 884, 893, 929, 938, 947, 956, 965, 974, 983, 992, 1199, 1289, 1298, 1379, 1388, 1397, 1469, 1478, 1487, 1496, 1559, 1568, 1577, 1586
MATHEMATICA
Select[Range[2000], Total[IntegerDigits[#]]==20&]
PROG
(Magma) [n: n in [1..2000] | &+Intseq(n) eq 20];
(Haskell)
a235229 n = a235229_list !! (n-1)
a235229_list = filter ((== 20) . a007953) [0..]
CROSSREFS
Cf. A011557 (1), A052216 (2), A052217 (3), A052218 (4), A052219 (5), A052220 (6), A052221 (7), A052222 (8), A052223 (9), A052224 (10), A166311 (11), A235151 (12), A143164 (13), A235225(14), A235226 (15), A235227 (16), A166370 (17), A235228 (18), A166459 (19).
Numbers whose sum of digits is 15.
+10
30
69, 78, 87, 96, 159, 168, 177, 186, 195, 249, 258, 267, 276, 285, 294, 339, 348, 357, 366, 375, 384, 393, 429, 438, 447, 456, 465, 474, 483, 492, 519, 528, 537, 546, 555, 564, 573, 582, 591, 609, 618, 627, 636, 645, 654, 663, 672, 681, 690, 708, 717, 726, 735
MATHEMATICA
Select[Range[1000], Total[IntegerDigits[#]] == 15 &]
PROG
(Magma) [n: n in [1..1000] | &+Intseq(n) eq 15];
(Haskell)
a235226 n = a235226_list !! (n-1)
a235226_list = filter ((== 15) . a007953) [0..]
CROSSREFS
Cf. A011557 (1), A052216 (2), A052217 (3), A052218 (4), A052219 (5), A052220 (6), A052221 (7), A052222 (8), A052223 (9), A052224 (10), A166311 (11), A235151 (12), A143164 (13), A235225(14), A235227 (16), A166370 (17), A235228 (18), A166459 (19), A235229 (20).
Search completed in 0.035 seconds
|