[go: up one dir, main page]

login
Search: a035023 -id:a035023
     Sort: relevance | references | number | modified | created      Format: long | short | data
Triangle T(n,k) = t(n-k, k); t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = x + 2.
+10
24
1, 2, 2, 4, 12, 4, 8, 52, 52, 8, 16, 196, 416, 196, 16, 32, 684, 2644, 2644, 684, 32, 64, 2276, 14680, 26440, 14680, 2276, 64, 128, 7340, 74652, 220280, 220280, 74652, 7340, 128, 256, 23172, 357328, 1623964, 2643360, 1623964, 357328, 23172, 256, 512, 72076, 1637860, 10978444, 27227908, 27227908, 10978444, 1637860, 72076, 512
OFFSET
0,2
COMMENTS
Related triangles may be found by varying the function f(x). If f(x) is a linear function, it can be parameterized as f(x) = a*x + b. With different values for a and b, the following triangles are obtained:
a\b 1.......2.......3.......4.......5.......6
The row sums of these, and similarly constructed number triangles, are shown in the following table:
a\b 1.......2.......3.......4.......5.......6.......7.......8.......9
The formula can be further generalized to: t(n,m) = f(m+s)*t(n-1,m) + f(n-s)*t(n,m-1), where f(x) = a*x + b. The following table specifies triangles with nonzero values for s (given after the slash).
a\ b 0 1 2 3
-2 A130595/1
-1
0
With the absolute value, f(x) = |x|, one obtains A038221/3, A038234/4,, A038247/5, A038260/6, A038273/7, A038286/8, A038299/9 (with value for s after the slash.
If f(x) = A000045(x) (Fibonacci) and s = 1, the result is A010048 (Fibonomial).
In the notation of Carlitz and Scoville, this is the triangle of generalized Eulerian numbers A(r, s | alpha, beta) with alpha = beta = 2. Also the array A(2,1,4) in the notation of Hwang et al. (see page 31). - Peter Bala, Dec 27 2019
LINKS
Michael De Vlieger, Table of n, a(n) for n = 0..11475 (rows 0 <= n <= 150, flattened.)
L. Carlitz and R. Scoville, Generalized Eulerian numbers: combinatorial applications, J. für die reine und angewandte Mathematik, 265 (1974): 110-37. See Section 3.
Dale Gerdemann, A256890, Plot of t(m,n) mod k , YouTube, 2015.
Hsien-Kuei Hwang, Hua-Huai Chern, and Guan-Huei Duh, An asymptotic distribution theory for Eulerian recurrences with applications, arXiv:1807.01412 [math.CO], 2018-2019.
FORMULA
T(n,k) = t(n-k, k); t(0,0) = 1, t(n,m) = 0 if n < 0 or m < 0 else t(n,m) = f(m)*t(n-1,m) + f(n)*t(n,m-1), where f(x) = x + 2.
Sum_{k=0..n} T(n, k) = A001715(n).
T(n,k) = Sum_{j = 0..k} (-1)^(k-j)*binomial(j+3,j)*binomial(n+4,k-j)*(j+2)^n. - Peter Bala, Dec 27 2019
Modified rule of Pascal: T(0,0) = 1, T(n,k) = 0 if k < 0 or k > n else T(n,k) = f(n-k) * T(n-1,k-1) + f(k) * T(n-1,k), where f(x) = x + 2. - Georg Fischer, Nov 11 2021
From G. C. Greubel, Oct 18 2022: (Start)
T(n, n-k) = T(n, k).
T(n, 0) = A000079(n). (End)
EXAMPLE
Array, t(n, k), begins as:
1, 2, 4, 8, 16, 32, 64, ...;
2, 12, 52, 196, 684, 2276, 7340, ...;
4, 52, 416, 2644, 14680, 74652, 357328, ...;
8, 196, 2644, 26440, 220280, 1623964, 10978444, ...;
16, 684, 14680, 220280, 2643360, 27227908, 251195000, ...;
32, 2276, 74652, 1623964, 27227908, 381190712, 4677894984, ...;
64, 7340, 357328, 10978444, 251195000, 4677894984, 74846319744, ...;
Triangle, T(n, k), begins as:
1;
2, 2;
4, 12, 4;
8, 52, 52, 8;
16, 196, 416, 196, 16;
32, 684, 2644, 2644, 684, 32;
64, 2276, 14680, 26440, 14680, 2276, 64;
128, 7340, 74652, 220280, 220280, 74652, 7340, 128;
256, 23172, 357328, 1623964, 2643360, 1623964, 357328, 23172, 256;
MATHEMATICA
Table[Sum[(-1)^(k-j)*Binomial[j+3, j] Binomial[n+4, k-j] (j+2)^n, {j, 0, k}], {n, 0, 9}, {k, 0, n}]//Flatten (* Michael De Vlieger, Dec 27 2019 *)
PROG
(PARI) t(n, m) = if ((n<0) || (m<0), 0, if ((n==0) && (m==0), 1, (m+2)*t(n-1, m) + (n+2)*t(n, m-1)));
tabl(nn) = {for (n=0, nn, for (k=0, n, print1(t(n-k, k), ", "); ); print(); ); } \\ Michel Marcus, Apr 14 2015
(Magma)
A256890:= func< n, k | (&+[(-1)^(k-j)*Binomial(j+3, j)*Binomial(n+4, k-j)*(j+2)^n: j in [0..k]]) >;
[A256890(n, k): k in [0..n], n in [0..10]]; // G. C. Greubel, Oct 18 2022
(SageMath)
def A256890(n, k): return sum((-1)^(k-j)*Binomial(j+3, j)*Binomial(n+4, k-j)*(j+2)^n for j in range(k+1))
flatten([[A256890(n, k) for k in range(n+1)] for n in range(11)]) # G. C. Greubel, Oct 18 2022
KEYWORD
nonn,tabl,easy
AUTHOR
Dale Gerdemann, Apr 12 2015
STATUS
approved
One half of 9-factorial numbers.
+10
14
1, 11, 220, 6380, 242440, 11394680, 638102080, 41476635200, 3069271004800, 254749493398400, 23436953392652800, 2367132292657932800, 260384552192372608000, 30985761710892340352000, 3966177498994219565056000, 543366317362208080412672000, 79331482334882379740250112000
OFFSET
1,2
FORMULA
2*a(n) = (9*n-7)(!^9) := Product_{j=1..n} (9*j - 7).
E.g.f.: (-1+(1-9*x)^(-2/9))/2.
From G. C. Greubel, Oct 18 2022: (Start)
a(n) = (1/2) * 9^n * Pochhammer(n, 2/9).
a(n) = (9*n-7)*a(n-1). (End)
From Amiram Eldar, Dec 21 2022: (Start)
a(n) = A084949(n)/2.
Sum_{n>=1} 1/a(n) = 2*(e/9^7)^(1/9)*(Gamma(2/9) - Gamma(2/9, 1/9)). (End)
MATHEMATICA
s=1; lst={s}; Do[s+=n*s; AppendTo[lst, s], {n, 10, 2*5!, 9}]; lst (* Vladimir Joseph Stephan Orlovsky, Nov 08 2008 *)
Table[9^n*Pochhammer[2/9, n]/2, {n, 40}] (* G. C. Greubel, Oct 18 2022 *)
PROG
(Magma) [n le 1 select 1 else (9*n-7)*Self(n-1): n in [1..40]]; // G. C. Greubel, Oct 18 2022
(SageMath) [9^n*rising_factorial(2/9, n)/2 for n in range(1, 40)] # G. C. Greubel, Oct 18 2022
KEYWORD
easy,nonn
STATUS
approved
One eighth of 9-factorial numbers.
+10
14
1, 17, 442, 15470, 680680, 36076040, 2236714480, 158806728080, 12704538246400, 1130703903929600, 110808982585100800, 11856561136605785600, 1375361091846271129600, 171920136480783891200000, 23037298288425041420800000, 3294333655244780923174400000, 500738715597206700322508800000
OFFSET
1,2
FORMULA
8*a(n) = (9*n-1)(!^9) := Product_{j=1..n} (9*j - 1).
a(n) = (9*n)!/(n!*2^4*3^(4*n)*5*7*A045756(n)*A035012(n)*A007559(n)*A035017(n) *A035018(n)*A034000(n) *A035021(n)).
E.g.f.: (-1+(1-9*x)^(-8/9))/8.
D-finite with recurrence: a(1) = 1, a(n) = (9*n - 1)*a(n-1) for n > 1. - Georg Fischer, Feb 15 2020
a(n) = (1/8) * 9^n * Pochhammer(n, 8/9). - G. C. Greubel, Oct 19 2022
From Amiram Eldar, Dec 21 2022: (Start)
a(n) = A049211(n)/8.
Sum_{n>=1} 1/a(n) = 8*(e/9)^(1/9)*(Gamma(8/9) - Gamma(8/9, 1/9)). (End)
MAPLE
f := gfun:-rectoproc({(9*n - 1)*a(n - 1) - a(n) = 0, a(1) = 1}, a(n), remember);
map(f, [$ (1 .. 20)]); # Georg Fischer, Feb 15 2020
MATHEMATICA
Table[9^n*Pochhammer[8/9, n]/8, {n, 40}] (* G. C. Greubel, Oct 19 2022 *)
PROG
(Magma) [n le 1 select 1 else (9*n-1)*Self(n-1): n in [1..40]]; // G. C. Greubel, Oct 19 2022
(SageMath) [9^n*rising_factorial(8/9, n)/8 for n in range(1, 40)] # G. C. Greubel, Oct 19 2022
KEYWORD
easy,nonn
STATUS
approved
One third of 9-factorial numbers.
+10
13
1, 12, 252, 7560, 294840, 14152320, 806682240, 53241027840, 3993077088000, 335418475392000, 31193918211456000, 3181779657568512000, 353177541990104832000, 42381305038812579840000, 5467188350006822799360000, 754471992300941546311680000, 110907382868238407307816960000, 17301551727445191540019445760000
OFFSET
1,2
COMMENTS
E.g.f. is g.f. for A034171(n-1).
FORMULA
3*a(n) = (9*n-6)(!^9) := Product_{j=1..n} (9*j-6) = 3^n*A007559(n).
E.g.f.: (-1+(1-9*x)^(-1/3))/3.
From G. C. Greubel, Oct 18 2022: (Start)
a(n) = (1/3) * 9^n * Pochhammer(n, 1/3).
a(n) = (9*n-6)*a(n-1). (End)
From Amiram Eldar, Dec 21 2022: (Start)
a(n) = A144758(n)/3.
Sum_{n>=1} 1/a(n) = 3*(e/9^6)^(1/9)*(Gamma(1/3) - Gamma(1/3, 1/9)). (End)
MATHEMATICA
s=1; lst={s}; Do[s+=n*s; AppendTo[lst, s], {n, 11, 2*5!, 9}]; lst (* Vladimir Joseph Stephan Orlovsky, Nov 08 2008 *)
Table[9^n*Pochhammer[1/3, n]/3, {n, 40}] (* G. C. Greubel, Oct 18 2022 *)
PROG
(Magma) [n le 1 select 1 else (9*n-6)*Self(n-1): n in [1..40]]; // G. C. Greubel, Oct 18 2022
(SageMath) [9^n*rising_factorial(1/3, n)/3 for n in range(1, 40)] # G. C. Greubel, Oct 18 2022
KEYWORD
easy,nonn
EXTENSIONS
Terms a(15) onward added by G. C. Greubel, Oct 18 2022
STATUS
approved
One quarter of 9-factorial numbers.
+10
13
1, 13, 286, 8866, 354640, 17377360, 1007886880, 67528420960, 5132159992960, 436233599401600, 41005958343750400, 4223613709406291200, 473044735453504614400, 57238412989874058342400, 7440993688683627584512000, 1034298122727024234247168000, 153076122163599586668580864000
OFFSET
1,2
FORMULA
4*a(n) = (9*n-5)(!^9) := Product_{j=1..n} (9*j-5).
E.g.f.: (-1+(1-9*x)^(-4/9))/4.
From G. C. Greubel, Oct 18 2022: (Start)
a(n) = (1/4) * 9^n * Pochhammer(n, 4/9).
a(n) = (9*n-5)*a(n-1). (End)
From Amiram Eldar, Dec 21 2022: (Start)
a(n) = A144829(n)/4.
Sum_{n>=1} 1/a(n) = 4*(e/9^5)^(1/9)*(Gamma(4/9) - Gamma(4/9, 1/9)). (End)
MATHEMATICA
s=1; lst={s}; Do[s+=n*s; AppendTo[lst, s], {n, 12, 2*5!, 9}]; lst (* Vladimir Joseph Stephan Orlovsky, Nov 08 2008 *)
Table[9^n*Pochhammer[4/9, n]/4, {n, 40}] (* G. C. Greubel, Oct 18 2022 *)
PROG
(Magma) [n le 1 select 1 else (9*n-5)*Self(n-1): n in [1..40]]; // G. C. Greubel, Oct 18 2022
(SageMath) [9^n*rising_factorial(4/9, n)/4 for n in range(1, 40)] # G. C. Greubel, Oct 18 2022
KEYWORD
easy,nonn
STATUS
approved
One fifth of 9-factorial numbers.
+10
13
1, 14, 322, 10304, 422464, 21123200, 1246268800, 84746278400, 6525463436800, 561189855564800, 53313036278656000, 5544555772980224000, 626534802346765312000, 76437245886305368064000, 10013279211106003216384000, 1401859089554840450293760000, 208877004343671227093770240000
OFFSET
1,2
FORMULA
5*a(n) = (9*n-4)(!^9) := Product_{j=1..n} (9*j-4).
E.g.f.: (-1+(1-9*x)^(-5/9))/5.
From G. C. Greubel, Oct 18 2022: (Start)
a(n) = (1/5) * 9^n * Pochhammer(n, 5/9).
a(n) = (9*n-4)*a(n-1). (End)
From Amiram Eldar, Dec 21 2022: (Start)
a(n) = A147629(n+1)/5.
Sum_{n>=1} 1/a(n) = 5*(e/9^4)^(1/9)*(Gamma(5/9) - Gamma(5/9, 1/9)). (End)
MATHEMATICA
s=1; lst={s}; Do[s+=n*s; AppendTo[lst, s], {n, 13, 2*5!, 9}]; lst (* Vladimir Joseph Stephan Orlovsky, Nov 08 2008 *)
Rest[FoldList[Times, 1, 9*Range[20]-4]/5] (* Harvey P. Dale, May 22 2013 *)
PROG
(Magma) [n le 1 select 1 else (9*n-4)*Self(n-1): n in [1..40]]; // G. C. Greubel, Oct 18 2022
(SageMath) [9^n*rising_factorial(5/9, n)/5 for n in range(1, 40)] # G. C. Greubel, Oct 18 2022
KEYWORD
easy,nonn
STATUS
approved
One sixth of 9-factorial numbers.
+10
13
1, 15, 360, 11880, 498960, 25446960, 1526817600, 105350414400, 8217332323200, 714907912118400, 68631159563366400, 7206271754153472000, 821514979973495808000, 101046342536739984384000, 13338117214849677938688000, 1880674527293804589355008000, 282101179094070688403251200000
OFFSET
1,2
FORMULA
6*a(n) = (9*n-3)(!^9) := Product_{j=1..n} (9*j-3) = 3^n*2*A034000(n), where 2*A034000(n) = (3*n-1)(!^3) := Product_{j=1..n} (3*j-1).
E.g.f.: (-1+(1-9*x)^(-2/3))/6.
From G. C. Greubel, Oct 18 2022: (Start)
a(n) = (1/6) * 9^n * Pochhammer(n, 2/3).
a(n) = (9*n - 3)*a(n-1). (End)
From Amiram Eldar, Dec 21 2022: (Start)
a(n) = A147630(n+1)/6.
Sum_{n>=1} 1/a(n) = 6*(e/9^3)^(1/9)*(Gamma(2/3) - Gamma(2/3, 1/9)). (End)
MATHEMATICA
s=1; lst={s}; Do[s+=n*s; AppendTo[lst, s], {n, 14, 2*5!, 9}]; lst (* Vladimir Joseph Stephan Orlovsky, Nov 08 2008 *)
Table[9^n*Pochhammer[2/3, n]/6, {n, 40}] (* G. C. Greubel, Oct 18 2022 *)
PROG
(Magma) [n le 1 select 1 else (9*n-3)*Self(n-1): n in [1..40]]; // G. C. Greubel, Oct 18 2022
(SageMath) [9^n*rising_factorial(2/3, n)/6 for n in range(1, 40)] # G. C. Greubel, Oct 18 2022
KEYWORD
easy,nonn
STATUS
approved
One seventh of 9-factorial numbers.
+10
10
1, 16, 400, 13600, 584800, 30409600, 1854985600, 129848992000, 10258070368000, 902710192384000, 87562888661248000, 9281666198092288000, 1067391612780613120000, 132356559984796026880000, 17603422477977871575040000, 2499685991872857763655680000, 377452584772801522312007680000
OFFSET
1,2
FORMULA
7*a(n) = (9*n-2)(!^9) := Product_{j=1..n} (9*j-2).
E.g.f.: (-1+(1-9*x)^(-7/9))/7.
D-finite with recurrence: a(1) = 1, a(n) = (9*n - 2)*a(n-1) for n > 1. - Georg Fischer, Feb 15 2020
a(n) = (1/7) * 9^n * Pochhammer(n, 7/9). - G. C. Greubel, Oct 19 2022
From Amiram Eldar, Dec 21 2022: (Start)
a(n) = A147631(n+1)/7.
Sum_{n>=1} 1/a(n) = 7*(e/9^2)^(1/9)*(Gamma(7/9) - Gamma(7/9, 1/9)). (End)
MAPLE
f := gfun:-rectoproc({(9*n - 2)*a(n - 1) - a(n) = 0, a(1) = 1}, a(n), remember);
map(f, [$ (1 .. 20)]); # Georg Fischer, Feb 15 2020
MATHEMATICA
Table[9^n*Pochhammer[7/9, n]/7, {n, 40}] (* G. C. Greubel, Oct 19 2022 *)
PROG
(Magma) [n le 1 select 1 else (9*n-2)*Self(n-1): n in [1..40]]; // G. C. Greubel, Oct 19 2022
(SageMath) [9^n*rising_factorial(7/9, n)/7 for n in range(1, 40)] # G. C. Greubel, Oct 19 2022
KEYWORD
easy,nonn
EXTENSIONS
Terms a(15) onward added by G. C. Greubel, Oct 19 2022
STATUS
approved
9-factorial numbers.
+10
10
1, 9, 162, 4374, 157464, 7085880, 382637520, 24106163760, 1735643790720, 140587147048320, 12652843234348800, 1252631480200531200, 135284199861657369600, 15828251383813912243200, 1994359674360552942643200, 269238556038674647256832000
OFFSET
0,2
COMMENTS
For n >= 1, a(n) is the order of the wreath product of the symmetric group S_n and the Abelian group (C_9)^n. - Ahmed Fares (ahmedfares(AT)my-deja.com), May 07 2001
a(n) = 9*A035023(n) = Product_{k=1..n} 9*k, n >= 1; a(0) := 1.
Pi^n/a(n) is the volume of a 2n-dimensional ball with radius 1/3. - Peter Luschny, Jul 24 2012
FORMULA
a(n) = n!*9^n =: (9*n)(!^9).
E.g.f.: 1/(1-9*x).
G.f.: 1/(1 - 9*x/(1 - 9*x/(1 - 18*x/(1 - 18*x/(1 - 27*x/(1 - 27*x/(1 - ...))))))), a continued fraction. - Ilya Gutkovskiy, Aug 09 2017
From Amiram Eldar, Jun 25 2020: (Start)
Sum_{n>=0} 1/a(n) = e^(1/9).
Sum_{n>=0} (-1)^n/a(n) = e^(-1/9). (End)
MAPLE
with(combstruct):A:=[N, {N=Cycle(Union(Z$9))}, labeled]: seq(count(A, size=n+1)/9, n=0..14); # Zerinvary Lajos, Dec 05 2007
MATHEMATICA
s=1; lst={s}; Do[s+=n*s; AppendTo[lst, s], {n, 8, 2*5!, 9}]; lst (* Vladimir Joseph Stephan Orlovsky, Nov 08 2008 *)
PROG
(Magma) [9^n*Factorial(n): n in [0..20]]; // Vincenzo Librandi, Oct 05 2011
CROSSREFS
Cf. A047058, A051188, A051189. a(n) = A051231(n-1, 0), A053116 (first column of triangle).
KEYWORD
easy,nonn
STATUS
approved
9-factorial numbers (4).
+10
5
1, 5, 70, 1610, 51520, 2112320, 105616000, 6231344000, 423731392000, 32627317184000, 2805949277824000, 266565181393280000, 27722778864901120000, 3132674011733826560000, 382186229431526840320000, 50066396055530016081920000, 7009295447774202251468800000
OFFSET
1,2
LINKS
FORMULA
a(n+1) = Sum_{k=0..n} A132393(n,k)*5^k*9^(n-k). - Philippe Deléham, Nov 09 2008
From R. J. Mathar, Nov 09 2008: (Start)
a(n) = a(n-1) + (4 + 9*(n-2))*a(n-1) = (9*n-13)*a(n-1).
a(n) = 9^(n-1)*Gamma(n-4/9)/Gamma(5/9).
G.f.: z*2F0(5/9,1; -; 9*z). (End)
a(n) = (-4)^n*Sum_{k=0..n} (9/4)^k*s(n+1,n+1-k), where s(n,k) are the Stirling numbers of the first kind, A048994. - Mircea Merca, May 03 2012
Sum_{n>=1} 1/a(n) = 1 + (e/9^4)^(1/9)*(Gamma(5/9) - Gamma(5/9, 1/9)). - Amiram Eldar, Dec 21 2022
MAPLE
seq(9^(n-1)*pochhammer(5/9, n-1), n = 1..20); # G. C. Greubel, Dec 03 2019
MATHEMATICA
Table[9^(n-1)*Pochhammer[5/9, n-1], {n, 20}] (* G. C. Greubel, Dec 03 2019 *)
PROG
(PARI) vector(20, n, prod(j=0, n-2, 9*j+5) ) \\ G. C. Greubel, Dec 03 2019
(Magma) [Round(9^(n-1)*Gamma(n-1 +5/9)/Gamma(5/9)): n in [1..20]]; // G. C. Greubel, Dec 03 2019
(Sage) [9^(n-1)*rising_factorial(5/9, n-1) for n in (1..20)] # G. C. Greubel, Dec 03 2019
KEYWORD
nonn
AUTHOR
STATUS
approved

Search completed in 0.017 seconds