[go: up one dir, main page]

login
A034689
a(n) = n-th sextic factorial number divided by 2.
14
1, 8, 112, 2240, 58240, 1863680, 70819840, 3116072960, 155803648000, 8725004288000, 540950265856000, 36784618078208000, 2722061737787392000, 217764939022991360000, 18727784755977256960000, 1722956197549907640320000, 168849707359890948751360000
OFFSET
1,2
FORMULA
2*a(n) = (6*n-4)(!^6) = Product_{j=1..n} (6*j-4) = 2^n*A007559(n), A007559(n) = (3*n-2)(!^3) = Product_{j=1..n} (3*j-2).
E.g.f.: (-1 + (1-6*x)^(-1/3))/2.
D-finite with recurrence: a(n) = 2*(3*n-2)*a(n-1). - R. J. Mathar, Feb 24 2020
a(n) = 3*6^(n-1)*Pochhammer(n, 1/3). - G. C. Greubel, Oct 21 2022
From Amiram Eldar, Dec 18 2022: (Start)
a(n) = A047657(n)/2.
Sum_{n>=1} 1/a(n) = 2*(e/6^4)^(1/6)*(Gamma(1/3, 1/6) - Gamma(1/3)). (End)
MATHEMATICA
Table[6^n*Pochhammer[1/3, n]/2, {n, 40}] (* G. C. Greubel, Oct 21 2022 *)
PROG
(Magma) [n le 1 select 1 else (6*n-4)*Self(n-1): n in [1..40]]; // G. C. Greubel, Oct 21 2022
(SageMath) [6^n*rising_factorial(1/3, n)/2 for n in range(1, 40)] # G. C. Greubel, Oct 21 2022
KEYWORD
easy,nonn
STATUS
approved