[go: up one dir, main page]

login
Search: a034173 -id:a034173
     Sort: relevance | references | number | modified | created      Format: long | short | data
Start of first run of n consecutive integers with same number of divisors.
(Formerly M2155)
+10
42
1, 2, 33, 242, 11605, 28374, 171893, 1043710445721, 2197379769820, 2642166652554075
OFFSET
1,2
COMMENTS
The entry 40311 given by Guy and by Wells is incorrect. - Jud McCranie, Jan 20 2002
a(10) <= 2642166652554075, a(11) <= 17707503256664346, a(12) <= 9827470582657267545. - David Wasserman, Feb 22 2008
a(10) > 10^13. - Giovanni Resta, Jul 13 2015
a(12) <= 3842083249515874843. - Hugo van der Sanden, Sep 20 2022
a(13) <= 34169215324203592637988571. - Hugo van der Sanden, Apr 13 2022
a(14) <= 9721439902882994590514319997146. - Hugo van der Sanden, Jun 14 2022
a(15) <= 80215613469168729088982885848674841. - Natalia Makarova, Sep 18 2022
a(16) <= 37981337212463143311694743672867136611416. - Vladimir Letsko, Mar 17 2017
a(17) <= 768369049267672356024049141254832375543516. - Vladimir Letsko, Sep 12 2017
a(18) <= 488900003598703704335810037459507226590256411. - Vladimir Letsko, Jun 03 2022
a(19) <= 5908388043825578351730345292813071711296723319324. - Vladimir Letsko, Apr 09 2022
a(20) <= 17668887847524548413038893976018715843277693308027547. Vladimir Letsko, May 30 2022
Spătaru proves that the longest such run up to N is at most exp(C*sqrt(log N log log N)) for some constant C, hence a(n) >> exp(exp(W((log^2 n)/C))) which is approximately exp(log^2 n/(2 log log n)). - Charles R Greathouse IV, Feb 06 2023
REFERENCES
J.-M. De Koninck, Ces nombres qui nous fascinent, Entry 33, pp 12, Ellipses, Paris 2008.
R. K. Guy, Unsolved Problems in Number Theory, section B18.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
D. Wells, The Penguin Dictionary of Curious and Interesting Numbers, Penguin Books, NY, 1986, pages 147 and 176.
LINKS
Pentti Haukkanen, Some computational results concerning the divisor functions d(n) and sigma(n), The Mathematics Student, Vol. 62 Nos. 1-4 (1993) pp. 166-168. See p. 167.
Vladimir A. Letsko, Some new results on consecutive equidivisible integers, arXiv:1510.07081 [math.NT], 2015.
Vladimir A. Letsko and Vasilii Dziubenko On consecutive equidivisible integers (in Russian), Boundaries of knowledge, 2 (45) 2016.
Carlos Rivera, Problem 20: k consecutive numbers with the same number of divisors, The Prime Puzzles and Problems Connection.
Carlos Rivera, Problem 61: problem 20 revisited, The Prime Puzzles and Problems Connection.
Vlad-Titus Spătaru, Runs of consecutive integers having the same number of divisors, arXiv preprint (2023). arXiv:2301.04464 [math.NT]
EXAMPLE
33 has four divisors (1, 3, 11, and 33), 34 has four divisors (1, 2, 17, and 34), 35 has four divisors (1, 5, 7, and 35). These are the first three consecutive numbers with the same number of divisors, so a(3)=33.
MATHEMATICA
tau = DivisorSigma[0, #]&;
A006558[q_, w_] := Module[{a, k, j, ok, n}, For[j = 0, j <= w, j++, For[n = 1, n <= q, n++, ok = 1; a = tau[n]; For[k = 1, k <= j, k++, If[a != tau[n + k], ok = 0; Break[]]]; If [ok == 1, Print[n]; Break[]]]]];
A006558[2*10^5, 7] (* Jean-François Alcover, Dec 10 2017 *)
PROG
(PARI) isok(n, k)=nb = numdiv(k); for (j=k+1, k+n-1, if (numdiv(j) != nb, return(0)); ); 1;
a(n) = {k=1; while (!isok(n, k), k++); k; } \\ Michel Marcus, Feb 17 2016
KEYWORD
nonn,more,hard
EXTENSIONS
a(8) from Jud McCranie, Jan 20 2002
a(9) conjectured by David Wasserman, Jan 08 2006
a(9) confirmed by Jud McCranie, Jan 14 2006
a(10) by Jud McCranie, Nov 27 2018
STATUS
approved
Smallest start of n consecutive numbers with distinct prime signatures.
+10
8
1, 1, 4, 6, 8, 23, 24, 1804, 1968, 8375, 53750, 243864, 639324, 41381620, 102621343, 7802708736, 7802708736, 178874468615, 1133934949368
OFFSET
1,3
COMMENTS
a(16) > 750000000. - Ray Chandler, Aug 21 2003
a(16) > 6.646*10^9. - David Wasserman, Jan 08 2006
a(18) > 10^11. - Donovan Johnson, Oct 24 2009
a(20) > 10^13. - Giovanni Resta, Jul 13 2015
CROSSREFS
A124058 gives another version of the same sequence.
First column of A083788.
KEYWORD
nonn,more
AUTHOR
Amarnath Murthy, May 07 2003
EXTENSIONS
Corrected and extended by Ray Chandler, Aug 17 2003
More terms from Ray Chandler, Aug 21 2003
a(16)-a(17) from Donovan Johnson, Oct 24 2009
a(18)-a(19) from Giovanni Resta, Jul 13 2015
New name from Jon E. Schoenfield, Nov 17 2022
STATUS
approved
a(n) is minimal such that prime factorizations of a(n)-n+1, ..., a(n) have same exponents.
+10
7
1, 3, 35, 19943, 204327, 380480350, 440738966079
OFFSET
1,2
COMMENTS
The final terms of the arithmetic progressions defined in A083785. - N. J. A. Sloane, Oct 18 2007
a(8) > 10^13. - Donovan Johnson, Oct 20 2009. [See Reble link for an upper limit.]
The main entry is A034173, which should be updated whenever something relevant is added here. - M. F. Hasler, Oct 28 2012
FORMULA
a(n) = A034173(n) + n - 1. - Max Alekseyev, Nov 10 2009
EXAMPLE
a(4)=19943 because 19940, ..., 19943 all have the form p^2 q r.
PROG
(PARI) A034174(n)={my(f); for(k=n, 9e9, f=0; for(i=0, n-1, f==(f=vecsort(factor(k-i)[, 2])) || !i || [k+=n-i-1; next(2)]); return(k))} \\ For illustrative purpose; not useful for n>=6. - M. F. Hasler, Oct 28 2012
CROSSREFS
Diagonal of A083785. Cf. A034173, A083785, A083787. See A034173 for more.
KEYWORD
hard,nonn,more,changed
AUTHOR
Dean Hickerson, Oct 01 1998
EXTENSIONS
a(7) from Donovan Johnson, Oct 20 2009
STATUS
approved
First of a run of 5 consecutive numbers with same prime signature.
+10
5
204323, 3252571, 5205074, 7201674, 20182921, 28387953, 36193650, 43216722, 51049537, 56155074, 57070850, 61961315, 62167075, 65425473, 76647074, 82507473, 92658049, 95943321, 100498849, 107236449, 109751473, 110899321, 112198075, 112477849, 116736323
OFFSET
1,1
COMMENTS
A number n is in this sequence iff n and n+1 is in A175590; also: iff n and n+2 are in A052214 (in which case n+1 is in A052214, too); and also: iff {n,n+1,n+2,n+3} are in A052213.
A034173(6) = A218448(62) = A218448(63)-1 is the least term n such that n+1 is also in the sequence.
LINKS
M. F. Hasler and Donovan Johnson, Table of n, a(n) for n = 1..1000 (first 140 terms from M. F. Hasler)
PROG
(PARI) is_A218448(n)={my(f); !for(i=0, 4, f!=(f=vecsort(factor(n+i)[, 2])) & i & return)}
(PARI) f(k)=vecsort(factor(k)[, 2]~, , 4)
t=f(n=2); while(n<1e8, for(i=n+1, n+4, tt=f(i); if(tt!=t, n=i; t=tt; next(2))); print1(n", "); n++) \\ Charles R Greathouse IV, Oct 28 2012
KEYWORD
nonn
AUTHOR
M. F. Hasler, Oct 28 2012
EXTENSIONS
a(6)-a(8) from Charles R Greathouse IV, Oct 28 2012
a(9)-a(25) from Donovan Johnson, Oct 28 2012
Values up to a(140) computed using b175590.txt from Charles R Greathouse IV - M. F. Hasler, Oct 28 2012
STATUS
approved
Square array read by antidiagonals: a(n, d) is the smallest number that begins an arithmetic progression with common difference d of n numbers with the same prime signature.
+10
4
1, 2, 1, 33, 3, 1, 19940, 3, 2, 1, 204323, 213, 155, 3, 1, 380480345, 213, 7572, 3, 2, 1
OFFSET
1,2
COMMENTS
First two columns are A034173 and A113457. First three rows are A000012, A086489 and A113458.
EXAMPLE
a(3, 2) = 3 because 3, 5 and 7 have the same prime signature.
KEYWORD
nonn,tabl,less
AUTHOR
David Wasserman, Jan 08 2006; corrected Jan 08 2006
STATUS
approved
Triangle read by rows in which the n-th row gives the smallest set of n consecutive numbers with the same prime signatures.
+10
3
1, 2, 3, 33, 34, 35, 19940, 19941, 19942, 19943, 204323, 204324, 204325, 204326, 204327, 380480345, 380480346, 380480347, 380480348, 380480349, 380480350, 440738966073, 440738966074, 440738966075, 440738966076, 440738966077, 440738966078, 440738966079
OFFSET
1,2
EXAMPLE
1
2 3
33 34 35
19940 19941 19942 19943
204323 204324 204325 204326 204327
...
CROSSREFS
The first column is given by A034173, the final terms by A034174.
KEYWORD
nonn,tabl,nice
AUTHOR
Amarnath Murthy, May 07 2003
EXTENSIONS
7th row added using A034173 by Michel Marcus, Dec 13 2015
STATUS
approved
Sequence contains the prime signature pertaining to the n-th row of A083785.
+10
2
1, 2, 6, 60, 60, 60, 420
OFFSET
1,2
FORMULA
a(n) = A046523(A034173(n)). - Amiram Eldar, Jul 28 2024
EXAMPLE
a(4) = 2^2*3*5 = 60 because A083785(4, 1) = 19940 = 2^2*5*997, (p^2*q*r) etc.
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Amarnath Murthy, May 07 2003
EXTENSIONS
a(6)-a(7) from Jinyuan Wang, May 24 2020
STATUS
approved
First of a run of 6 consecutive numbers with same prime signature.
+10
2
380480345, 2713001274, 6282718946, 7209536449, 9809067073, 10684724346, 12008728850, 14824913049, 17231547073, 17552118546, 17659180314, 18036555273, 20473171322, 21507097001, 23676804346, 24742649321, 25401767522, 25694056449, 27656894273, 28259097818
OFFSET
1,1
COMMENTS
A number n is in this sequence iff n and n+1 is in A218448; see the comment there for other characterizations in terms of membership in A175590 or A052214 or A052213.
LINKS
PROG
(PARI) is_A218455(n)={my(s(n)=vecsort(factor(n)[, 2]), t=s(n)); !for(m=n+1, n+5, t!=s(m) & return)}
KEYWORD
nonn
AUTHOR
M. F. Hasler, Oct 29 2012
EXTENSIONS
a(2)-a(20) from Donovan Johnson, Oct 29 2012
STATUS
approved
Numbers k such that Sum_{d|k} tau(d) = Sum_{d|k+1} tau(d).
+10
2
2, 14, 21, 33, 34, 38, 44, 57, 75, 85, 86, 93, 94, 98, 116, 118, 122, 133, 135, 141, 142, 145, 147, 158, 171, 177, 201, 202, 205, 213, 214, 217, 218, 230, 244, 253, 285, 296, 298, 301, 302, 326, 332, 334, 375, 381, 387, 393, 394, 429, 434, 445, 446, 453, 481
OFFSET
1,1
COMMENTS
tau(n) is the number of positive divisors of n (A000005).
Numbers k such that A007425(k) = A007425(k+1).
Subsequence of A052213 and A005237.
Sequence is not the same as A052213, first deviation is at a(212): A052213(212) = 2041, a(212) = 2024. Number 2024 is the smallest number n such that A007425(n) = A007425(n+1) with different prime signatures of numbers n and n+1 (2024 = 2^3 * 11 * 23, 2025 = 3^4 * 5^2; A007425(2024) = A007425(2025) = 90).
Sequence of the smallest numbers k such that Sum_{d|k} tau(d) = Sum_{d|k+1} tau(d) = ... = Sum_{d|k+n-1} tau(d) for n>=1: 1, 2, 33, 19940, 204323, 380480345, 440738966073, ...; conjecture: this sequence is different from A034173.
LINKS
Amiram Eldar, Table of n, a(n) for n = 1..10000 (terms 1..1000 from Jaroslav Krizek)
EXAMPLE
2 is a term because Sum_{d|2} tau(d) = Sum_{d|3} tau(d) = 1 + 2 = 3.
MATHEMATICA
Select[Range@ 500, Total@ Map[DivisorSigma[0, #] &, Divisors@ #] == Total@ Map[DivisorSigma[0, #] &, Divisors[# + 1]] &] (* Michael De Vlieger, Dec 25 2016 *)
PROG
(Magma) [n: n in [1..10000] | &+[NumberOfDivisors(d): d in Divisors(n)] eq &+[NumberOfDivisors(d): d in Divisors(n+1)]]
(PARI) sd(n) = sumdiv(n, d, numdiv(d)); \\ A007425
isok(m) = sd(m) == sd(m+1); \\ Michel Marcus, Apr 28 2020
CROSSREFS
KEYWORD
nonn
AUTHOR
Jaroslav Krizek, Dec 25 2016
STATUS
approved
Smallest of the first occurrence of n consecutive integers with all different prime signatures.
+10
1
2, 3, 4, 6, 8, 23, 24, 1804, 1968, 8375, 53750, 243864, 639324, 41381620, 102621343, 7802708736, 7802708736, 178874468615, 1133934949368
OFFSET
1,1
COMMENTS
Essentially the same as A083790. - T. D. Noe, Nov 10 2006
a(18) > 10^11. - Donovan Johnson, Oct 24 2009
a(20) > 10^13. - Giovanni Resta, Jul 13 2015
LINKS
Eric Weisstein's World of Mathematics, Prime Signature.
EXAMPLE
a(6) = 23 because it begins the first occurrence of 6 consecutive integers that have all different prime signatures ({1}, {1,3}, {2}, {1,1}, {3}, {1,2} respectively for 23 through 28).
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Joe McCauley (mccauleyj(AT)insightbb.com), Nov 03 2006
EXTENSIONS
a(12)-a(15) added from A083790, Nov 10 2006
a(16)-a(17) from Donovan Johnson, Oct 24 2009
a(18)-a(19) from Giovanni Resta, Jul 13 2015
STATUS
approved

Search completed in 0.010 seconds