[go: up one dir, main page]

TOPICS
Search

Prime Signature


The prime signature of a positive integer n is a sorted list of nonzero exponents a_i in the prime factorization

 n=p_1^(a_1)p_2^(a_2)....

By definition, the prime signature of 1 is {1}. The prime numbers have prime signature {1} and squares of prime numbers have prime signature {2}.

The following table gives the prime signatures of the first few positive integers (OEIS A118914).

nfactorizationprime signaturenfactorizationprime signature
11{1}1111{1}
22{1}122^23{1,2}
33{1}1313{1}
42^2{2}142·7{1,1}
55{1}153·5{1,1}
62·3{1,1}162^4{4}
77{1}1717{1}
82^3{3}182·3^2{1,2}
93^2{2}1919{1}
102·5{1,1}202^25{1,2}

See also

Prime Factorization

Explore with Wolfram|Alpha

References

Sloane, N. J. A. Sequences A118914 in "The On-Line Encyclopedia of Integer Sequences."

Referenced on Wolfram|Alpha

Prime Signature

Cite this as:

Weisstein, Eric W. "Prime Signature." From MathWorld--A Wolfram Web Resource. https://mathworld.wolfram.com/PrimeSignature.html

Subject classifications