[go: up one dir, main page]

login
Search: a018836 -id:a018836
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number of squares on infinite half chessboard at <=n knight moves from a fixed point on the edge.
+10
7
1, 5, 23, 60, 110, 172, 248, 338, 442, 560, 692, 838, 998, 1172, 1360, 1562, 1778, 2008, 2252, 2510, 2782, 3068, 3368, 3682, 4010, 4352, 4708, 5078, 5462, 5860, 6272, 6698, 7138, 7592, 8060, 8542, 9038, 9548, 10072, 10610, 11162, 11728, 12308, 12902, 13510
OFFSET
0,2
FORMULA
a(n) = 7*n^2 - n + 2, for n>3.
a(n) = 3*a(n-1)-3*a(n-2)+a(n-3) for n>6. G.f.: -(2*x^6 -x^5 -6*x^4 +5*x^3 +11*x^2 +2*x +1) / (x -1)^3. - Colin Barker, Jul 14 2013
EXAMPLE
5 squares are reachable after 1 move, from these you can reach 18 new squares more, so a(1)=5 and a(2)=23.
MATHEMATICA
LinearRecurrence[{3, -3, 1}, {1, 5, 23, 60, 110, 172, 248}, 50] (* Paolo Xausa, Jul 17 2024 *)
CROSSREFS
See A018836 (unbounded), A098499 (diagonal halfplane), A098500 (quadrant), A098501 (octant).
KEYWORD
nonn,easy
AUTHOR
Ralf Stephan, Sep 15 2004
EXTENSIONS
More terms from Colin Barker, Jul 14 2013
STATUS
approved
Number of squares on infinite half chessboard at <=n knight moves from a fixed point on the diagonal.
+10
4
1, 5, 23, 57, 109, 169, 246, 334, 439, 555, 688, 832, 993, 1165, 1354, 1554, 1771, 1999, 2244, 2500, 2773, 3057, 3358, 3670, 3999, 4339, 4696, 5064, 5449, 5845, 6258, 6682, 7123, 7575, 8044, 8524, 9021, 9529, 10054, 10590, 11143, 11707, 12288, 12880, 13489
OFFSET
0,2
FORMULA
a(n) = (1/4) [28n^2 - 6n + 9 + 3(-1)^n], for n>3.
G.f.: -(3*x^7-x^6-8*x^5+4*x^4+13*x^3+13*x^2+3*x+1) / ((x-1)^3*(x+1)). - Colin Barker, Jul 14 2013
EXAMPLE
5 squares are reachable after 1 move, from these you can reach 18 new squares more, so a(1)=5, a(2)=23.
CROSSREFS
Equals A098498(n) - A052938(n-4), n>3.
See A018836 (unbounded), A098498 (halfplane), A098500 (quadrant), A098501 (octant).
KEYWORD
nonn,easy
AUTHOR
Ralf Stephan, Sep 15 2004
EXTENSIONS
More terms from Colin Barker, Jul 14 2013
STATUS
approved
Number of squares on infinite quarter chessboard at <=n knight moves from the corner.
+10
4
1, 3, 12, 32, 59, 91, 130, 176, 229, 289, 356, 430, 511, 599, 694, 796, 905, 1021, 1144, 1274, 1411, 1555, 1706, 1864, 2029, 2201, 2380, 2566, 2759, 2959, 3166, 3380, 3601, 3829, 4064, 4306, 4555, 4811, 5074, 5344, 5621, 5905, 6196, 6494, 6799, 7111, 7430
OFFSET
0,2
FORMULA
a(n) = (1/2) * (7*n^2 + n + 2), for n>3.
G.f.: -(2*x^6-2*x^5-4*x^4+4*x^3+6*x^2+1) / (x-1)^3. - Colin Barker, Jul 15 2013
EXAMPLE
3 squares are reachable after 1 move, from these you can reach 8 new squares more, so a(1)=3, a(2)=12.
CROSSREFS
First differences are in A047883.
See A018836 (unbounded), A098498 (halfplane), A098499 (diagonal halfplane), A098501 (octant).
KEYWORD
nonn,easy
AUTHOR
Ralf Stephan, Sep 15 2004
EXTENSIONS
More terms from Colin Barker, Jul 15 2013
STATUS
approved
The number of distinct positions on an infinite chessboard reachable by the (2,3)-leaper in <= n moves.
+10
4
1, 9, 41, 129, 321, 625, 997, 1413, 1885, 2425, 3033, 3709, 4453, 5265, 6145, 7093, 8109, 9193, 10345, 11565, 12853, 14209, 15633, 17125, 18685, 20313, 22009, 23773, 25605, 27505, 29473, 31509, 33613, 35785, 38025, 40333, 42709, 45153, 47665, 50245, 52893
OFFSET
0,2
FORMULA
a(n) = 34*n^2 + 30*n + 9 for n >= 6.
From Colin Barker, Jan 05 2018: (Start)
G.f.: (1 + x)*(1 + 5*x + 12*x^2 + 20*x^3 + 28*x^4 - 20*x^5 - 24*x^6 + 12*x^8) / (1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>9. (End)
MATHEMATICA
LinearRecurrence[{3, -3, 1}, {1, 9, 41, 129, 321, 625, 997, 1413, 1885, 2425}, 50] (* Paolo Xausa, Mar 17 2024 *)
PROG
(PARI) Vec((1 + x)*(1 + 5*x + 12*x^2 + 20*x^3 + 28*x^4 - 20*x^5 - 24*x^6 + 12*x^8) / (1 - x)^3 + O(x^40)) \\ Colin Barker, Jan 07 2018
CROSSREFS
Cf. A018836 (1,2)-leaper or (1,3)-leaper, A297741 (3,4)-leaper.
Partial sums of A018839.
KEYWORD
nonn,easy
AUTHOR
R. J. Mathar, Jan 05 2018
STATUS
approved
Number of squares on infinite chessboard at n knight's moves from center.
+10
3
1, 8, 32, 68, 96, 120, 148, 176, 204, 232, 260, 288, 316, 344, 372, 400, 428, 456, 484, 512, 540, 568, 596, 624, 652, 680, 708, 736, 764, 792, 820, 848, 876, 904, 932, 960, 988, 1016, 1044, 1072, 1100, 1128, 1156
OFFSET
0,2
LINKS
Moon Duchin, Counting in Groups: Fine Asymptotic Geometry, Notices of the AMS 63.8 (2016), pp. 871-974. See p. 873.
M. Katzman, Counting Monomials, J. Alg. Comb. 22 (2005) 331-341.
A. M. Miller and D. L. Farnsworth, Counting the Number of Squares Reachable in k Knight's Moves, Open Journal of Discrete Mathematics, 2013, 3, 151-154.
FORMULA
a(n) = 28*n-20, n >= 5.
G.f.: (1 + 5*x + 12*x^2 - 8*x^4 + 4*x^5)*(1+x)/(1-x)^2.
MAPLE
(1 + 5*x + 12*x^2 - 8*x^4 + 4*x^5)*(1+x)/(1-x)^2; seq(coeff(series(%, x, n+1), x, n), n=0..50);
MATHEMATICA
CoefficientList[Series[(1+5x+12x^2-8x^4+4x^5)(1+x)/(1-x)^2, {x, 0, 50}], x] (* or *) Join[{1, 8, 32, 68, 96}, LinearRecurrence[{2, -1}, {120, 148}, 46]] (* Harvey P. Dale, Jul 05 2011 *)
CROSSREFS
Cf. A018836 (partial sums), A038522.
KEYWORD
nonn,nice,walk,easy
EXTENSIONS
Formula corrected by Jean Drabbe, Mar 11 2013
STATUS
approved
Number of squares on infinite octant of chessboard at <=n knight moves from the corner. The octant includes the diagonal.
+10
3
1, 2, 5, 13, 31, 49, 70, 93, 121, 151, 186, 223, 265, 309, 358, 409, 465, 523, 586, 651, 721, 793, 870, 949, 1033, 1119, 1210, 1303, 1401, 1501, 1606, 1713, 1825, 1939, 2058, 2179, 2305, 2433, 2566, 2701, 2841, 2983, 3130, 3279, 3433, 3589, 3750, 3913, 4081
OFFSET
0,2
FORMULA
a(n) = (1/8) * [14n^2 + 8n + 5 + 3(-1)^n], for n>4.
G.f.: -(2*x^8+2*x^7-7*x^6-5*x^5+8*x^4+5*x^3+x^2+1) / ((x-1)^3*(x+1)). - Colin Barker, Jul 14 2013
EXAMPLE
2 squares are reachable after 1 move, from these you can reach 3 new squares more, so a(1)=2, a(2)=5.
CROSSREFS
See A018836 (unbounded), A098498 (halfplane), A098499 (diagonal halfplane), A098500 (quadrant).
KEYWORD
nonn,easy
AUTHOR
Ralf Stephan, Sep 15 2004
EXTENSIONS
More terms from Colin Barker, Jul 14 2013
STATUS
approved
The number of distinct positions on an infinite chessboard reachable by the (3,4)-leaper in <= n moves.
+10
2
1, 9, 41, 129, 321, 681, 1289, 2121, 3081, 4121, 5233, 6445, 7777, 9233, 10813, 12517, 14345, 16297, 18373, 20573, 22897, 25345, 27917, 30613, 33433, 36377, 39445, 42637, 45953, 49393, 52957, 56645, 60457, 64393, 68453, 72637, 76945, 81377, 85933, 90613, 95417
OFFSET
0,2
FORMULA
Conjecture: a(n) = 62*n^2 + 30*n - 55 for n >= 10.
Conjectures from Colin Barker, Jan 06 2018: (Start)
G.f.: (1 + 6*x + 17*x^2 + 32*x^3 + 48*x^4 + 64*x^5 + 80*x^6 - 24*x^7 - 96*x^8 - 48*x^9 - 8*x^10 + 28*x^11 + 20*x^12 + 4*x^13) / (1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3) for n>13.
(End)
CROSSREFS
Cf. A018836 (1,2)-leaper or (1,3)-leaper, A297740 (2,3)-leaper.
KEYWORD
nonn
AUTHOR
R. J. Mathar, Jan 05 2018
STATUS
approved
Number of squares on infinite chessboard that a knight can reach in n moves from a fixed square.
+10
1
1, 8, 33, 76, 129, 196, 277, 372, 481, 604, 741, 892, 1057, 1236, 1429, 1636, 1857, 2092, 2341, 2604, 2881, 3172, 3477, 3796, 4129, 4476, 4837, 5212, 5601, 6004, 6421, 6852, 7297, 7756, 8229, 8716, 9217, 9732, 10261, 10804, 11361, 11932, 12517, 13116, 13729, 14356, 14997, 15652
OFFSET
0,2
COMMENTS
Related to A018842: a(n) = A018842(n) + A018842(n-2) + A018842(n-4) + ... .
REFERENCES
M. Petkovic, Mathematics and Chess, Dover Publications (2003), Problem 3.11.
LINKS
Mordechai Katzman, Counting monomials, arXiv:math/0504113 [math.AC], 2005.
FORMULA
a(n) = -3 + 4*n + 7*n^2 + 4*sign((n-2)*(n-1)).
G.f.: (1 + 5*x + 12*x^2 - 8*x^4 + 4*x^5)/(1 - x)^3.
a(n) = 3*a(n-1) - 3*a(n-2) + a(n-3). - Vincenzo Librandi, Jul 09 2012
For n >= 3, a(n) = A005892(n).
E.g.f.: exp(x)*(1 + 11*x + 7*x^2) - 2*x*(x + 2). - Stefano Spezia, Jul 27 2022
EXAMPLE
a(2)=33 because knight in 2 moves from square (0,0) can reach one of the following squares: {{0,0}, {-4,-2}, {-4,0}, {-4,2}, {-3,-3}, {-3,-1}, {-3,1}, {-3,3}, {-2,-4}, {-2,0}, {-2,4}, {-1,-3}, {-1,-1}, {-1,1}, {-1,3}, {0,-4}, {0,-2}, {0,2}, {0,4}, {1,-3}, {1,-1}, {1,1}, {1,3}, {2,-4}, {2,0}, {2,4}, {3,-3}, {3,-1}, {3,1}, {3,3}, {4,-2}, {4,0}, {4,2}}.
MATHEMATICA
Table[ -3 + 4*n + 7*n^2 + 4*Sign[(n - 2)(n - 1)], {n, 0, 100}]
CoefficientList[Series[(1+5*x+12*x^2-8*x^4+4*x^5)/(1-x)^3, {x, 0, 50}], x] (* Vincenzo Librandi, Jul 09 2012 *)
Join[{1, 8, 33}, LinearRecurrence[{3, -3, 1}, {76, 129, 196}, 50]] (* Harvey P. Dale, Dec 05 2014 *)
PROG
(Magma) I:=[1, 8, 33, 76, 129, 196, 277]; [n le 7 select I[n] else 3*Self(n-1)-3*Self(n-2)+Self(n-3): n in [1..50]]: // Vincenzo Librandi, Jul 09 2012
(PARI) a(n)=7*n^2 + 4*n - 3 + 4*sign((n-2)*(n-1)) \\ Charles R Greathouse IV, Feb 09 2017
CROSSREFS
Cf. A005892, A018842 (squares in EXACTLY n moves), A018836 (squares in <=n moves).
KEYWORD
easy,nice,nonn
AUTHOR
Anton Chupin (chupin(AT)icmm.ru), May 14 2006
EXTENSIONS
Link updated by Tristan Miller, Jun 13 2013
STATUS
approved

Search completed in 0.008 seconds