[go: up one dir, main page]

login
Search: a017209 -id:a017209
     Sort: relevance | references | number | modified | created      Format: long | short | data
Partial products of successive terms of A017209; a(0)=1 .
+20
6
1, 4, 52, 1144, 35464, 1418560, 69509440, 4031547520, 270113683840, 20528639971840, 1744934397606400, 164023833375001600, 16894454837625164800, 1892178941814018457600, 228953651959496233369600, 29763974754734510338048000, 4137192490908096936988672000
OFFSET
0,2
LINKS
FORMULA
a(n) = Sum_{k=0..n} A132393(n,k)*4^k*9^(n-k).
a(n) = (-5)^n*Sum_{k=0..n} (9/5)^k*s(n+1,n+1-k), where s(n,k) are the Stirling numbers of the first kind, A048994. - Mircea Merca, May 03 2012
a(n) + (5-9*n)*a(n-1) = 0. - R. J. Mathar, Sep 04 2016
From Vaclav Kotesovec, Nov 29 2021: (Start)
a(n) = 9^n * Gamma(n + 4/9) / Gamma(4/9).
a(n) ~ sqrt(2*Pi) * 9^n * n^(n - 1/18) / (Gamma(4/9) * exp(n)). (End)
From G. C. Greubel, May 26 2022: (Start)
G.f.: hypergeometric2F0([1, 4/9], [], 9*x).
E.g.f.: (1-9*x)^(-4/9). (End)
Sum_{n>=0} 1/a(n) = 1 + (e/9^5)^(1/9)*(Gamma(4/9) - Gamma(4/9, 1/9)). - Amiram Eldar, Dec 21 2022
EXAMPLE
a(0)=1, a(1)=4, a(2)=4*13=52, a(3)=4*13*22=1144, a(4)=4*13*22*31=35464, ...
MATHEMATICA
Table[4*9^(n-1)*Pochhammer[13/9, n-1], {n, 0, 20}] (* Vaclav Kotesovec, Nov 29 2021 *)
PROG
(PARI) a(n) = (-5)^n*sum(k=0, n, (9/5)^k*stirling(n+1, n+1-k, 1)); \\ Michel Marcus, Feb 20 2015
(Magma) [n le 2 select 4^(n-1) else (9*n-14)*Self(n-1): n in [1..30]]; // G. C. Greubel, May 26 2022
(SageMath) [9^n*rising_factorial(4/9, n) for n in (0..30)] # G. C. Greubel, May 26 2022
KEYWORD
nonn,easy
AUTHOR
Philippe Deléham, Sep 21 2008
EXTENSIONS
a(9) originally given incorrectly as 20520639971840 corrected by Peter Bala, Feb 20 2015
STATUS
approved
a(n) = 9*n + 1.
+10
43
1, 10, 19, 28, 37, 46, 55, 64, 73, 82, 91, 100, 109, 118, 127, 136, 145, 154, 163, 172, 181, 190, 199, 208, 217, 226, 235, 244, 253, 262, 271, 280, 289, 298, 307, 316, 325, 334, 343, 352, 361, 370, 379, 388, 397, 406, 415, 424, 433, 442, 451, 460, 469, 478
OFFSET
0,2
COMMENTS
Also all the numbers with digital root 1; A010888(a(n)) = 1. - Rick L. Shepherd, Jan 12 2009
A116371(a(n)) = A156144(a(n)); positions where records occur in A156144: A156145(n+1) = A156144(a(n)). - Reinhard Zumkeller, Feb 05 2009
If A=[A147296] 9*n^2+2*n (n>0, 11, 40, 87, ...); Y=[A010701] 3 (3, 3, 3, ...); X=[A017173] 9*n+1 (n>0, 10, 19, 28, ...), we have, for all terms, Pell's equation X^2 - A*Y^2 = 1. Example: 10^2 - 11*3^2 = 1; 19^2 - 40*3^2 = 1; 28^2 - 87*3^2 = 1. - Vincenzo Librandi, Aug 01 2010
FORMULA
G.f.: (1 + 8*x)/(1 - x)^2.
a(n) = 2*a(n-1) - a(n-2) with a(0)=1, a(1)=10. - Vincenzo Librandi, Aug 01 2010
E.g.f.: exp(x)*(1 + 9*x). - Stefano Spezia, Apr 20 2023
MATHEMATICA
Range[1, 1000, 9] (* Vladimir Joseph Stephan Orlovsky, May 28 2011 *)
LinearRecurrence[{2, -1}, {1, 10}, 60] (* Harvey P. Dale, Dec 27 2014 *)
PROG
(Sage) [i+1 for i in range(480) if gcd(i, 9) == 9] # Zerinvary Lajos, May 20 2009
(PARI) forstep(n=1, 500, 9, print1(n", ")) \\ Charles R Greathouse IV, May 28 2011
(Haskell)
a017173 = (+ 1) . (* 9)
a017173_list = [1, 10 ..] -- Reinhard Zumkeller, Feb 04 2014
CROSSREFS
Cf. A093644 ((9, 1) Pascal, column m=1).
Cf. A010888.
Numbers with digital root m: this sequence (m=1), A017185 (m=2), A017197 (m=3), A017209 (m=4), A017221 (m=5), A017233 (m=6), A017245 (m=7), A017257 (m=8), A008591 (m=9).
KEYWORD
nonn,easy
STATUS
approved
a(n) = 9*n + 5.
+10
23
5, 14, 23, 32, 41, 50, 59, 68, 77, 86, 95, 104, 113, 122, 131, 140, 149, 158, 167, 176, 185, 194, 203, 212, 221, 230, 239, 248, 257, 266, 275, 284, 293, 302, 311, 320, 329, 338, 347, 356, 365, 374, 383, 392, 401, 410, 419, 428, 437, 446, 455, 464, 473, 482
OFFSET
0,1
COMMENTS
Numbers whose digital root is 5. - Halfdan Skjerning, Mar 15 2018
FORMULA
G.f.: (5+4*x)/(1-x)^2. - R. J. Mathar, Mar 20 2018
From G. C. Greubel, Jan 06 2023: (Start)
a(n) = a(n-1) + 9, with a(0) = 5.
E.g.f.: (5 + 9*x)*exp(x). (End)
MAPLE
seq(9*w+5, w=0..100); # Matt C. Anderson, May 18 2017
MATHEMATICA
Range[5, 1000, 9] (* Vladimir Joseph Stephan Orlovsky, May 28 2011 *)
9*Range[0, 60]+5 (* or *) LinearRecurrence[{2, -1}, {5, 14}, 60] (* Harvey P. Dale, Jul 05 2021 *)
PROG
(PARI) forstep(n=5, 500, 9, print1(n", ")) \\ Charles R Greathouse IV, May 28 2011
(Magma) [9*n+5: n in [0..60]]; // Vincenzo Librandi, Jul 24 2011
(SageMath) [9*n+5 for n in range(51)] # G. C. Greubel, Jan 06 2023
CROSSREFS
Sequences of the form (9*n+5)^k: this sequence (k=1), A017222 (k=2), A017223 (k=3), A017224 (k=4), A017225 (k=5), A017226 (k=6), A017227 (k=7), A017228 (k=8), A017229 (k=9), A017230 (k=10), A017231 (k=11).
Cf. similar sequences with closed form (2*k-1)*n+k listed in A269044.
KEYWORD
nonn,easy
STATUS
approved
Numbers with digital root 1, 4, 7 or 9.
+10
20
1, 4, 7, 9, 10, 13, 16, 18, 19, 22, 25, 27, 28, 31, 34, 36, 37, 40, 43, 45, 46, 49, 52, 54, 55, 58, 61, 63, 64, 67, 70, 72, 73, 76, 79, 81, 82, 85, 88, 90, 91, 94, 97, 99, 100, 103, 106, 108, 109, 112, 115, 117, 118, 121, 124, 126, 127, 130, 133, 135, 136, 139, 142
OFFSET
1,2
COMMENTS
All squares are members (see A070433).
May also be defined as: possible sums of digits of squares. - Zak Seidov, Feb 11 2008
First differences are periodic: 3, 3, 2, 1, 3, 3, 2, 1, 3, 3, 2, 1, 3, 3, 2, 1, 3, 3, 2, 1, 3, 3, 2, 1, 3, 3, 2, 1, ... - Zak Seidov, Feb 11 2008
Minimal n with corresponding sum-of-digits(n^2) are: 1, 2, 4, 3, 8, 7, 13, 24, 17, 43, 67, 63, 134, 83, 167, 264, 314, 313, 707, 1374, 836, 1667, 2236, 3114, 4472, 6833, 8167, 8937, 16667, 21886, 29614, 60663, 41833, 74833, 89437, 94863, 134164, 191833.
a(n) is the set of all m such that 9k+m can be a perfect square (quadratic residues of 9 including the trivial case of 0). - Gary Detlefs, Mar 19 2010
From Klaus Purath, Feb 20 2023: (Start)
The sum of digits of any term belongs to the sequence. Also the products of any terms belong to the sequence.
This is the union of A017173, A017209, A017245 and A008591.
Positive integers of the forms x^2 + (2*m+1)*x*y + (m^2+m-2)*y^2, for integers m.
This sequence is closed under multiplication. (End)
LINKS
H. I. Okagbue, M. O. Adamu, S. A. Iyase, and A. A. Opanuga, Sequence of Integers Generated by Summing the Digits of their Squares, Indian Journal of Science and Technology, Vol 8(15), DOI: 10.17485/ijst/2015/v8i15/69912, July 2015.
Eric Weisstein's World of Mathematics, Square Number
FORMULA
From R. J. Mathar, Feb 14 2008: (Start)
O.g.f.: x*(2x+1)*(x^2+x+1)/((-1+x)^2*(x+1)*(x^2+1)).
a(n) = a(n-4) + 9. (End)
a(n) = 3*(n - floor(n/4)) - (3 - i^n - (-i)^n - (-1)^n)/2, where i = sqrt(-1). - Gary Detlefs, Mar 19 2010
a(n) = a(n-1)+a(n-4)-a(n-5). - Wesley Ivan Hurt, May 27 2021
a(n) = 3*n - floor(n/4) - 2*floor((n+3)/4). - Ridouane Oudra, Jan 21 2024
E.g.f.: (cos(x) + (9*x - 1)*cosh(x) - 3*sin(x) + (9*x - 2)*sinh(x))/4. - Stefano Spezia, Feb 21 2024
MAPLE
seq( 3*(n-floor(n/4)) - (3-I^n-(-I)^n-(-1)^n)/2, n=1..63); # Gary Detlefs, Mar 19 2010
MATHEMATICA
LinearRecurrence[{1, 0, 0, 1, -1}, {1, 4, 7, 9, 10}, 70] (* Harvey P. Dale, Aug 29 2015 *)
PROG
(PARI) forstep(n=1, 1e3, [3, 3, 2, 1], print1(n", ")) \\ Charles R Greathouse IV, Sep 21 2012
CROSSREFS
For complement see A268226.
KEYWORD
nonn,base,easy
EXTENSIONS
Edited by N. J. A. Sloane, May 16 2008 at the suggestion of R. J. Mathar
STATUS
approved
a(0) = 1; a(n) = (5*3^(n-1) - 1)/2 for n > 0.
+10
20
1, 2, 7, 22, 67, 202, 607, 1822, 5467, 16402, 49207, 147622, 442867, 1328602, 3985807, 11957422, 35872267, 107616802, 322850407, 968551222, 2905653667, 8716961002, 26150883007, 78452649022, 235357947067, 706073841202
OFFSET
0,2
COMMENTS
From Erich Friedman's math magic page 2nd paragraph under "Answers" section.
Let A be the Hessenberg matrix of order n, defined by: A[1,j] = 1, A[i,i] = 2,(i>1), A[i,i-1] = -1, and A[i,j] = 0 otherwise. Then, for n >= 1, a(n) = (-1)^n*charpoly(A,-1). - Milan Janjic, Jan 26 2010
If n > 0 and H = hex number (A003215), then 9*H(a(n)) - 2 = H(a(n+1)), for example 9*H(2) - 2 = 9*19 - 2 = 169 = H(7). For n > 2, this is a subsequence of A017209, see formula. - Klaus Purath, Mar 31 2021
FORMULA
The following is a summary of formulas added over the past 18 years.
a(n) = 3*a(n-1) + 1; with a(0)=1, a(1)=2. - Jason Earls, Apr 29 2001
For n>0, a(n) = a(n-1)+5*3^(n-2) = (5*A003462(n)+1)/3 = a(n-1)+A005030(n-2). - Henry Bottomley, May 01 2001
From Colin Barker, Apr 24 2012: (Start)
a(n) = 4*a(n-1) - 3*a(n-2) for n > 2.
G.f.: (1-2*x+2*x^2)/((1-x)*(1-3*x)). (End)
a(n+1) = A134931(n) + 1. - Philippe Deléham, Apr 14 2013
For n > 0, A008343(a(n)) = 0. - Dmitry Kamenetsky, Feb 14 2017
For n > 0, a(n) = floor(3^n*5/6). - M. F. Hasler, Apr 06 2019
From Klaus Purath, Mar 31 2021: (Start)
a(n) = A017209(a(n-2)), n > 2.
a(n) = 2 + Sum_{i = 0..n-2} A005030(i).
a(n+1)*a(n+2) = a(n)*a(n+3) + 20*3^n, n > 1.
a(n) = 3^n - A007051(n-1). (End)
E.g.f.: (5*exp(3*x) - 3*exp(x) + 4)/6. - Stefano Spezia, Aug 28 2023
MATHEMATICA
LinearRecurrence[{4, -3}, {1, 2, 7}, 30] (* Harvey P. Dale, Nov 15 2022 *)
PROG
(PARI) { for (n=0, 200, if (n>1, a1=a=3*a1 + 1, if (n==0, a=1, a1=a=2)); write("b060816.txt", n, " ", a); ) } \\ Harry J. Smith, Jul 13 2009
(PARI) A060816(n)=if(n, 3^n*5\6, 1) \\ M. F. Hasler, Apr 06 2019
CROSSREFS
Equals A057198 - 1.
Cf. A005030 (first differences), A244762 (partial sums).
KEYWORD
easy,nonn
AUTHOR
Jason Earls, Apr 29 2001
EXTENSIONS
Edited by M. F. Hasler, Apr 06 2019 and by N. J. A. Sloane, Apr 09 2019
STATUS
approved
a(n) = 9*n + 6.
+10
12
6, 15, 24, 33, 42, 51, 60, 69, 78, 87, 96, 105, 114, 123, 132, 141, 150, 159, 168, 177, 186, 195, 204, 213, 222, 231, 240, 249, 258, 267, 276, 285, 294, 303, 312, 321, 330, 339, 348, 357, 366, 375, 384, 393, 402, 411, 420, 429, 438, 447, 456, 465, 474, 483
OFFSET
0,1
COMMENTS
General form: (q*n-1)*q, cf. A017233 (q=3), A098502 (q=4). - Vladimir Joseph Stephan Orlovsky, Feb 16 2009
Numbers whose digital root is 6; that is, A010888(a(n)) = 6. (Ball essentially says that Iamblichus (circa 350) announced that a number equal to the sum of three integers 3n, 3n - 1, and 3n - 2 has 6 as what is now called the number's digital root.) - Rick L. Shepherd, Apr 01 2014
REFERENCES
W. W. R. Ball, A Short Account of the History of Mathematics, Sterling Publishing Company, Inc., 2001 (Facsimile Edition) [orig. pub. 1912], pages 110-111.
LINKS
Tanya Khovanova, Recursive Sequences.
Luis Manuel Rivera, Integer sequences and k-commuting permutations, arXiv preprint arXiv:1406.3081 [math.CO], 2014-2015.
FORMULA
G.f.: 3*(2+x)/(x-1)^2 . - R. J. Mathar, Mar 20 2018
Sum_{n>=0} (-1)^n/a(n) = sqrt(3)*Pi/27 - log(2)/9. - Amiram Eldar, Dec 12 2021
MATHEMATICA
Range[6, 1000, 9] (* Vladimir Joseph Stephan Orlovsky, May 28 2011 *)
LinearRecurrence[{2, -1}, {6, 15}, 60] (* Harvey P. Dale, Feb 01 2014 *)
PROG
(Magma) [9*n+6: n in [0..60]]; // Vincenzo Librandi, Jul 24 2011
(PARI) a(n)=9*n+6 \\ Charles R Greathouse IV, Oct 07 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
David J. Horn and Laura Krebs Gordon (lkg615(AT)verizon.net), 1985
STATUS
approved
Triangle read by rows: T(n,k) = 2*n*k + n + k (1 <= k <= n).
+10
9
4, 7, 12, 10, 17, 24, 13, 22, 31, 40, 16, 27, 38, 49, 60, 19, 32, 45, 58, 71, 84, 22, 37, 52, 67, 82, 97, 112, 25, 42, 59, 76, 93, 110, 127, 144, 28, 47, 66, 85, 104, 123, 142, 161, 180, 31, 52, 73, 94, 115, 136, 157, 178, 199, 220, 34, 57, 80, 103, 126, 149, 172, 195, 218, 241, 264
OFFSET
1,1
COMMENTS
T(n,k) gives number of edges (of unit length) in a k X n grid.
The values 2*T(n,k)+1 = (2*n+1)*(2*k+1) are nonprime and therefore in A047845.
LINKS
Vincenzo Librandi, Rows n = 1..100, flattened
Alain Kraus, Cours-Arithmétique et algèbre, 2016-2017, Université de Paris VI. See Exercice 6 p. 13.
OEIS Wiki, Odd composites
FORMULA
From G. C. Greubel, Oct 17 2023: (Start)
T(n, 1) = A016777(n).
T(n, 2) = A016873(n).
T(n, 3) = A017017(n).
T(n, 4) = A017209(n).
T(n, 5) = A017449(n).
T(n, 6) = A186113(n).
T(n, n-1) = A056220(n).
T(n, n-2) = A090288(n-2).
T(n, n-3) = A271625(n-2).
T(n, n) = 4*A000217(n).
T(2*n, n) = A033954(n).
Sum_{k=1..n} T(n, k) = A162254(n).
Sum_{k=1..n} (-1)^(k-1)*T(n, k) = A182868((n+1)/2) if n is odd otherwise A182868(n/2) + 1. (End)
EXAMPLE
Triangle begins:
4;
7, 12;
10, 17, 24;
13, 22, 31, 40;
16, 27, 38, 49, 60;
19, 32, 45, 58, 71, 84;
22, 37, 52, 67, 82, 97, 112;
25, 42, 59, 76, 93, 110, 127, 144;
28, 47, 66, 85, 104, 123, 142, 161, 180;
MATHEMATICA
T[n_, k_]:= 2 n k + n + k; Table[T[n, k], {n, 10}, {k, n}]//Flatten (* Vincenzo Librandi, Jun 01 2014 *)
PROG
(Magma) [(2*n*k + n + k): k in [1..n], n in [1..11]]; // Vincenzo Librandi, Jun 01 2014
(Python)
def T(r, c): return 2*r*c + r + c
a = [T(r, c) for r in range(12) for c in range(1, r+1)]
print(a) # Michael S. Branicky, Sep 07 2022
(SageMath) flatten([[2*n*k +n +k for k in range(1, n+1)] for n in range(1, 14)]) # G. C. Greubel, Oct 17 2023
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Artemario Tadeu Medeiros da Silva (artemario(AT)uol.com.br), Jun 09 2003
EXTENSIONS
Edited by N. J. A. Sloane, Jul 23 2009
Name edited by Michael S. Branicky, Sep 07 2022
STATUS
approved
a(n) = 3^(n+1) + (3^n-1)/2.
+10
9
3, 10, 31, 94, 283, 850, 2551, 7654, 22963, 68890, 206671, 620014, 1860043, 5580130, 16740391, 50221174, 150663523, 451990570, 1355971711, 4067915134, 12203745403, 36611236210, 109833708631, 329501125894, 988503377683, 2965510133050, 8896530399151
OFFSET
0,1
COMMENTS
a(n-1) agrees with the graph radius of the n-Sierpinski carpet graph for n = 2 to at least n = 5. See A100774 for the graph diameter of the n-Sierpinski carpet graph.
The inverse binomial transform gives 3, 7, 14, 28, 56, ... i.e., A005009 with a leading 3. - R. J. Mathar, Jan 08 2020
First differences of A108765. The digital root of a(n) for n > 1 is always 4. a(n) is never divisible by 7 or by 12. a(n) == 10 (mod 84) for odd n. a(n) == 31 (mod 84) for even n > 0. Conjecture: This sequence contains no prime factors p == {11, 13, 23, 61 71, 73} (mod 84). - Klaus Purath, Apr 13 2020
This is a subsequence of A017209 for n > 1. See formula. - Klaus Purath, Jul 03 2020
LINKS
Eric Weisstein's World of Mathematics, Graph Radius.
Eric Weisstein's World of Mathematics, Sierpinski Carpet Graph.
FORMULA
G.f.: (3-2*x)/((1-x)*(1-3*x)).
a(n) = A000244(n+1) + A003462(n).
a(n) = 3*a(n-1) + 1 for n > 0, a(0)=3. (Note that if a(0) were 1 in this recurrence we would get A003462, if it were 2 we would get A060816. - N. J. A. Sloane, Dec 06 2019)
a(n) = 4*a(n-1) - 3*a(n-2) for n > 1, a(0)=3, a(1)=10.
a(n) = 2*a(n-1) + 3*a(n-2) + 2 for n > 1.
a(n) = A199109(n) - 1.
a(n) = (7*3^n - 1)/2. - Eric W. Weisstein, Mar 13 2018
From Klaus Purath, Apr 13 2020: (Start)
a(n) = A057198(n+1) + A024023(n).
a(n) = A029858(n+2) - A024023(n).
a(n) = A052919(n+1) + A029858(n+1).
a(n) = (A000244(n+1) + A171498(n))/2.
a(n) = 7*A003462(n) + 3.
a(n) = A116952(n) + 2. (End)
a(n) = A017209(7*(3^(n-2)-1)/2 + 3), n > 1. - Klaus Purath, Jul 03 2020
E.g.f.: exp(x)*(7*exp(2*x) - 1)/2. - Stefano Spezia, Aug 28 2023
EXAMPLE
Ternary....................Decimal
10...............................3
101.............................10
1011............................31
10111...........................94
101111.........................283
1011111........................850
10111111......................2551
101111111.....................7654, etc.
MATHEMATICA
(* Start from Eric W. Weisstein, Mar 13 2018 *)
Table[(7 3^n - 1)/2, {n, 0, 20}]
(7 3^Range[0, 20] - 1)/2
LinearRecurrence[{4, -3}, {10, 31}, {0, 20}]
CoefficientList[Series[(3 - 2 x)/((x - 1) (3 x - 1)), {x, 0, 20}], x]
(* End *)
PROG
(PARI) Vec((3 - 2*x) / ((1 - x)*(1 - 3*x)) + O(x^30)) \\ Colin Barker, Nov 27 2019
(Magma) [3^(n+1) + (3^n-1)/2: n in [0..40]]; // Vincenzo Librandi, Jan 09 2020
CROSSREFS
Cf. A000244, A003462, A005009, A005032 (first differences), A017209, A060816, A100774, A108765 (partial sums), A199109, A329774.
KEYWORD
nonn,easy
AUTHOR
Philippe Deléham, Feb 16 2014
STATUS
approved
Coins left when packing boomerangs into n X n coins.
+10
8
4, 3, 7, 13, 6, 13, 22, 9, 19, 31, 12, 25, 40, 15, 31, 49, 18, 37, 58, 21, 43, 67, 24, 49, 76, 27, 55, 85, 30, 61, 94, 33, 67, 103, 36, 73, 112, 39, 79, 121, 42, 85, 130, 45, 91, 139, 48, 97, 148, 51, 103, 157, 54, 109, 166, 57
OFFSET
2,1
COMMENTS
The coins left after packing boomerangs into n X n coins using the same rule as A229593. See illustration in links.
FORMULA
G.f. -x^2*(-4-3*x-7*x^2-5*x^3+x^5) / ( (x-1)^2*(1+x+x^2)^2 ). - R. J. Mathar, Oct 16 2013
MATHEMATICA
LinearRecurrence[{0, 0, 2, 0, 0, -1}, {4, 3, 7, 13, 6, 13}, 80] (* Harvey P. Dale, Jan 19 2019 *)
PROG
(Small Basic)
u[2]=4
d[3]=-1
d[4]=4
d[5]=6
For n=2 To 100
If n+1 >=6 Then
If Math.Remainder(n+1, 3)=0 Then
d[n+1]=d[n-2]-6
Else
d[n+1]=d[n-2]+3
EndIf
EndIf
u[n+1]=u[n]+d[n+1]
TextWindow.Write(u[n]+", ")
EndFor
CROSSREFS
Cf. A229593 (Boomerangs), A229598 (Voids), A017209 (trisection), A008585 (trisection), A016921 (trisection).
KEYWORD
nonn,easy
AUTHOR
Kival Ngaokrajang, Oct 05 2013
STATUS
approved
Odd composite numbers congruent to 4 modulo 9.
+10
8
49, 85, 121, 175, 247, 265, 301, 319, 355, 391, 427, 445, 481, 517, 535, 553, 589, 625, 679, 697, 715, 805, 841, 895, 913, 931, 949, 985, 1003, 1057, 1075, 1111, 1147, 1165, 1183, 1219, 1255, 1273, 1309, 1345, 1363, 1417, 1435, 1507, 1525, 1561, 1615, 1633
OFFSET
1,1
LINKS
MATHEMATICA
Select[18Range[125] + 13, Not[PrimeQ[#]] &] (* Alonso del Arte, Sep 24 2014 *)
Select[Range[13, 1700, 18], CompositeQ] (* Harvey P. Dale, Aug 21 2024 *)
PROG
(PARI) lista(nn) = {forcomposite(n=1, nn, if ((n % 2) && ((n % 9) == 4), print1(n, ", ")); ); } \\ Michel Marcus, Sep 22 2014
CROSSREFS
Cf. A017209 (9n + 4, supersequence of this sequence), A247676, A247679, A247681, A247682, A247683.
KEYWORD
nonn,easy
AUTHOR
Odimar Fabeny, Sep 22 2014
STATUS
approved

Search completed in 0.029 seconds