# Greetings from The On-Line Encyclopedia of Integer Sequences! http://oeis.org/ Search: id:a017233 Showing 1-1 of 1 %I A017233 #52 Sep 08 2022 08:44:42 %S A017233 6,15,24,33,42,51,60,69,78,87,96,105,114,123,132,141,150,159,168,177, %T A017233 186,195,204,213,222,231,240,249,258,267,276,285,294,303,312,321,330, %U A017233 339,348,357,366,375,384,393,402,411,420,429,438,447,456,465,474,483 %N A017233 a(n) = 9*n + 6. %C A017233 General form: (q*n-1)*q, cf. A017233 (q=3), A098502 (q=4). - _Vladimir Joseph Stephan Orlovsky_, Feb 16 2009 %C A017233 Numbers whose digital root is 6; that is, A010888(a(n)) = 6. (Ball essentially says that Iamblichus (circa 350) announced that a number equal to the sum of three integers 3n, 3n - 1, and 3n - 2 has 6 as what is now called the number's digital root.) - _Rick L. Shepherd_, Apr 01 2014 %D A017233 W. W. R. Ball, A Short Account of the History of Mathematics, Sterling Publishing Company, Inc., 2001 (Facsimile Edition) [orig. pub. 1912], pages 110-111. %H A017233 Vincenzo Librandi, Table of n, a(n) for n = 0..5000 %H A017233 Tanya Khovanova, Recursive Sequences. %H A017233 Luis Manuel Rivera, Integer sequences and k-commuting permutations, arXiv preprint arXiv:1406.3081 [math.CO], 2014-2015. %H A017233 Index entries for linear recurrences with constant coefficients, signature (2,-1). %F A017233 G.f.: 3*(2+x)/(x-1)^2 . - _R. J. Mathar_, Mar 20 2018 %F A017233 Sum_{n>=0} (-1)^n/a(n) = sqrt(3)*Pi/27 - log(2)/9. - _Amiram Eldar_, Dec 12 2021 %t A017233 Range[6, 1000, 9] (* _Vladimir Joseph Stephan Orlovsky_, May 28 2011 *) %t A017233 LinearRecurrence[{2,-1},{6,15},60] (* _Harvey P. Dale_, Feb 01 2014 *) %o A017233 (Magma) [9*n+6: n in [0..60]]; // _Vincenzo Librandi_, Jul 24 2011 %o A017233 (PARI) a(n)=9*n+6 \\ _Charles R Greathouse IV_, Oct 07 2015 %Y A017233 Cf. A008591, A017209, A017221. %K A017233 nonn,easy %O A017233 0,1 %A A017233 David J. Horn and Laura Krebs Gordon (lkg615(AT)verizon.net), 1985 # Content is available under The OEIS End-User License Agreement: http://oeis.org/LICENSE