[go: up one dir, main page]

login
Search: a010373 -id:a010373
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number of rooted ternary trees with n nodes; number of n-carbon alkyl radicals C(n)H(2n+1) ignoring stereoisomers.
(Formerly M1146 N0436 N1341)
+10
86
1, 1, 1, 2, 4, 8, 17, 39, 89, 211, 507, 1238, 3057, 7639, 19241, 48865, 124906, 321198, 830219, 2156010, 5622109, 14715813, 38649152, 101821927, 269010485, 712566567, 1891993344, 5034704828, 13425117806, 35866550869, 95991365288, 257332864506, 690928354105
OFFSET
0,4
COMMENTS
Number of unlabeled rooted trees in which each node has out-degree <= 3.
Ignoring stereoisomers means that the children of a node are unordered. They can be permuted in any way and it is still the same tree. See A000625 for the analogous sequence with stereoisomers counted.
In alkanes every carbon has valence exactly 4 and every hydrogen has valence exactly 1. But the trees considered here are just the carbon "skeletons" (with all the hydrogen atoms stripped off) so now each carbon bonds to 1 to 4 other carbons. The out-degree is then <= 3.
Other descriptions of this sequence: quartic planted trees with n nodes; ternary rooted trees with n nodes and height at most 3.
The number of aliphatic amino acids with n carbon atoms in the side chain, and no rings or double bonds, has the same growth as this sequence. - Konrad Gruetzmann, Aug 13 2012
REFERENCES
N. L. Biggs et al., Graph Theory 1736-1936, Oxford, 1976, p. 62 (quoting Cayley, who is wrong).
A. Cayley, On the mathematical theory of isomers, Phil. Mag. vol. 67 (1874), 444-447 (a(6) is wrong).
J. L. Faulon, D. Visco and D. Roe, Enumerating Molecules, In: Reviews in Computational Chemistry Vol. 21, Ed. K. Lipkowitz, Wiley-VCH, 2005.
R. A. Fisher, Contributions to Mathematical Statistics, Wiley, 1950, 41.397.
J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 529.
Handbook of Combinatorics, North-Holland '95, p. 1963.
Knop, Mueller, Szymanski and Trinajstich, Computer generation of certain classes of molecules.
D. Perry, The number of structural isomers ..., J. Amer. Chem. Soc. 54 (1932), 2918-2920.
G. Polya, Mathematical and Plausible Reasoning, Vol. 1 Prob. 4 pp. 85; 233.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Vaclav Kotesovec, Table of n, a(n) for n = 0..1000 (first 200 terms from N. J. A. Sloane)
A. T. Balaban, J. W. Kennedy and L. V. Quintas, The number of alkanes having n carbons and a longest chain of length d, J. Chem. Education, 65 (1988), 304-313.
A. Cayley, On the mathematical theory of isomers, Phil. Mag. vol. 67 (1874), 444-447 (a(6) is wrong). (Annotated scanned copy)
Maximilian Fichtner, K. Voigt, and S. Schuster, The tip and hidden part of the iceberg: Proteinogenic and non-proteinogenic aliphatic amino acids, Biochimica et Biophysica Acta (BBA)-General, 2016, Volume 1861, Issue 1, Part A, January 2017, pp. 3258-3269.
P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009; see page 478.
K. Grützmann, S. Böcker, and S. Schuster, Combinatorics of aliphatic amino acids, Naturwissenschaften, Vol. 98, No. 1, 79-86, 2011.
H. R. Henze and C. M. Blair, The number of structurally isomeric alcohols of the methanol series, J. Amer. Chem. Soc., 53 (8) (1931), 3042-3046.
H. R. Henze and C. M. Blair, The number of structurally isomeric alcohols of the methanol series, J. Amer. Chem. Soc., 53 (8) (1931), 3042-3045. (Annotated scanned copy)
P. Leroux and B. Miloudi, Généralisations de la formule d'Otter, Ann. Sci. Math. Québec, Vol. 16, No. 1, pp. 53-80, 1992. (Annotated scanned copy)
Camden A. Parks and James B. Hendrickson, Enumeration of monocyclic and bicyclic carbon skeletons, J. Chem. Inf. Comput. Sci., vol. 31, 334-339 (1991).
D. Perry, The number of structural isomers of certain homologs of methane and methanol, J. Amer. Chem. Soc. 54 (1932), 2918-2920. [Gives a(60) correctly.] (Annotated scanned copy)
G. Polya, Algebraische Berechnung der Anzahl der Isomeren einiger organischer Verbindungen, Zeit. f. Kristall., 93 (1936), 415-443; Table I, line 2.
G. Polya, Algebraische Berechnung der Anzahl der Isomeren einiger organischer Verbindungen, Zeit. f. Kristall., 93 (1936), 415-443; Table I, line 2. (Annotated scanned copy)
R. C. Read, The Enumeration of Acyclic Chemical Compounds, pp. 25-61 of A. T. Balaban, ed., Chemical Applications of Graph Theory, Ac. Press, 1976. [Annotated scanned copy] See p. 20, Eq. (G); p. 27, Eq. 2.1.
R. W. Robinson, F. Harary and A. T. Balaban, Numbers of chiral and achiral alkanes and monosubstituted alkanes, Tetrahedron 32 (3) (1976), 355-361.
R. W. Robinson, F. Harary and A. T. Balaban, Numbers of chiral and achiral alkanes and monosubstituted alkanes, Tetrahedron 32 (3) (1976), 355-361. (Annotated scanned copy)
Hugo Schiff, Zur Statistik chemischer Verbindungen, Berichte der Deutschen Chemischen Gesellschaft, Vol. 8, pp. 1542-1547, 1875. [Annotated scanned copy]
N. Trinajstich, Z. Jerievi, J. V. Knop, W. R. Muller and K. Szymanski, Computer Generation of Isomeric Structures, Pure & Appl. Chem., Vol. 55, No. 2, pp. 379-390, 1983.
FORMULA
G.f. A(x) satisfies A(x) = 1 + (1/6)*x*(A(x)^3 + 3*A(x)*A(x^2) + 2*A(x^3)).
a(n) ~ c * d^n / n^(3/2), where d = 1/A261340 = 2.8154600331761507465266167782426995425365065396907..., c = 0.517875906458893536993162356992854345458168348098... . - Vaclav Kotesovec, Aug 15 2015
EXAMPLE
From Joerg Arndt, Feb 25 2017: (Start)
The a(5) = 8 rooted trees with 5 nodes and out-degrees <= 3 are:
: level sequence out-degrees (dots for zeros)
: 1: [ 0 1 2 3 4 ] [ 1 1 1 1 . ]
: O--o--o--o--o
:
: 2: [ 0 1 2 3 3 ] [ 1 1 2 . . ]
: O--o--o--o
: .--o
:
: 3: [ 0 1 2 3 2 ] [ 1 2 1 . . ]
: O--o--o--o
: .--o
:
: 4: [ 0 1 2 3 1 ] [ 2 1 1 . . ]
: O--o--o--o
: .--o
:
: 5: [ 0 1 2 2 2 ] [ 1 3 . . . ]
: O--o--o
: .--o
: .--o
:
: 6: [ 0 1 2 2 1 ] [ 2 2 . . . ]
: O--o--o
: .--o
: .--o
:
: 7: [ 0 1 2 1 2 ] [ 2 1 . 1 . ]
: O--o--o
: .--o--o
:
: 8: [ 0 1 2 1 1 ] [ 3 1 . . . ]
: O--o--o
: .--o
: .--o
(End)
MAPLE
N := 45; G000598 := 0: i := 0: while i<(N+1) do G000598 := series(1+z*(G000598^3/6+subs(z=z^2, G000598)*G000598/2+subs(z=z^3, G000598)/3)+O(z^(N+1)), z, N+1): t[ i ] := G000598: i := i+1: od: A000598 := n->coeff(G000598, z, n);
[Another Maple program for g.f. G000598] G000598 := 1; f := proc(n) global G000598; coeff(series(1+(1/6)*x*(G000598^3+3*G000598*subs(x=x^2, G000598)+2*subs(x=x^3, G000598)), x, n+1), x, n); end; for n from 1 to 50 do G000598 := series(G000598+f(n)*x^n, x, n+1); od; G000598;
spec := [S, {Z=Atom, S=Union(Z, Prod(Z, Set(S, card=3)))}, unlabeled]: [seq(combstruct[count](spec, size=n), n=0..20)];
MATHEMATICA
m = 45; Clear[f]; f[1, x_] := 1+x; f[n_, x_] := f[n, x] = Expand[1+x*(f[n-1, x]^3/6 + f[n-1, x^2]*f[n-1, x]/2 + f[n-1, x^3]/3)][[1 ;; n]]; Do[f[n, x], {n, 2, m}]; CoefficientList[f[m, x], x]
(* second program (after N. J. A. Sloane): *)
m = 45; gf[_] = 0; Do[gf[z_] = 1 + z*(gf[z]^3/6 + gf[z^2]*gf[z]/2 + gf[z^3]/3) + O[z]^m // Normal, m]; CoefficientList[gf[z], z] (* Jean-François Alcover, Sep 23 2014, updated Jan 11 2018 *)
b[0, i_, t_, k_] = 1; m = 3; (* m = maximum children *)
b[n_, i_, t_, k_]:= b[n, i, t, k]= If[i<1, 0,
Sum[Binomial[b[i-1, i-1, k, k] + j-1, j]*
b[n-i*j, i-1, t-j, k], {j, 0, Min[t, n/i]}]];
Join[{1}, Table[b[n-1, n-1, m, m], {n, 1, 35}]] (* Robert A. Russell, Dec 27 2022 *)
PROG
(PARI) seq(n)={my(g=O(x)); for(n=1, n, g = 1 + x*(g^3/6 + subst(g, x, x^2)*g/2 + subst(g, x, x^3)/3) + O(x^n)); Vec(g)} \\ Andrew Howroyd, May 22 2018
KEYWORD
nonn,easy,nice,eigen
EXTENSIONS
Additional comments from Steve Strand (snstrand(AT)comcast.net), Aug 20 2003
STATUS
approved
Number of n-node unrooted quartic trees; number of n-carbon alkanes C(n)H(2n+2) ignoring stereoisomers.
(Formerly M0718 N0267)
+10
76
1, 1, 1, 1, 2, 3, 5, 9, 18, 35, 75, 159, 355, 802, 1858, 4347, 10359, 24894, 60523, 148284, 366319, 910726, 2278658, 5731580, 14490245, 36797588, 93839412, 240215803, 617105614, 1590507121, 4111846763, 10660307791, 27711253769
OFFSET
0,5
COMMENTS
Trees are unrooted, nodes are unlabeled. Every node has degree <= 4.
Ignoring stereoisomers means that the children of a node are unordered. They can be permuted in any way and it is still the same tree. See A000628 for the analogous sequence with stereoisomers counted.
In alkanes every carbon has valence exactly 4 and every hydrogen has valence exactly 1. But the trees considered here are just the carbon "skeletons" (with all the hydrogen atoms stripped off) so now each carbon bonds to 1 to 4 other carbons. The degree of each node is then <= 4.
REFERENCES
K. Adam, Title?, MNU 1983, 36, 29 (in German).
F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Camb. 1998, p. 290.
L. Bytautats, D. J. Klein, Alkane Isomere Combinatorics: Stereostructure enumeration and graph-invariant and molecylar-property distributions, J. Chem. Inf. Comput. Sci 39 (1999) 803, Table 1.
A. Cayley, Über die analytischen Figuren, welche in der Mathematik Baeume genannt werden..., Chem. Ber. 8 (1875), 1056-1059.
R. Davies and P. J. Freyd, C_{167}H_{336} is The Smallest Alkane with More Realizable Isomers than the Observable Universe has Particles, Journal of Chemical Education, Vol. 66, 1989, pp. 278-281.
J. L. Faulon, D. Visco and D. Roe, Enumerating Molecules, In: Reviews in Computational Chemistry Vol. 21, Ed. K. Lipkowitz, Wiley-VCH, 2005.
Steven R. Finch, Mathematical Constants, Cambridge University Press, 2003, Section 5.6.1 Chemical Isomers, p. 299.
J. L. Gross and J. Yellen, eds., Handbook of Graph Theory, CRC Press, 2004; p. 529.
Handbook of Combinatorics, North-Holland '95, p. 1963.
J. B. Hendrickson and C. A. Parks, "Generation and Enumeration of Carbon skeletons", J. Chem. Inf. Comput. Sci, vol. 31 (1991) pp. 101-107. See Table 2, column 2 on page 103.
M. D. Jackson and T. I. Bieber, Applications of degree distribution, 2: construction and enumeration of isomers in the alkane series, J. Chem. Info. and Computer Science, 33 (1993), 701-708.
J. Lederberg et al., Applications of artificial intelligence for chemical systems, I: The number of possible organic compounds. Acyclic structures containing C, H, O and N, J. Amer. Chem. Soc., 91 (1969), 2973-2097.
L. M. Masinter, Applications of artificial intelligence for chemical systems, XX, Exhaustive generation of cyclic and acyclic isomers, J. Amer. Chem. Soc., 96 (1974), 7702-7714.
D. Perry, The number of structural isomers ..., J. Amer. Chem. Soc. 54 (1932), 2918-2920. [Gives a(60) correctly - compare first link below]
M. Petkovsek and T. Pisanski, Counting disconnected structures: chemical trees, fullerenes, I-graphs and others, Croatica Chem. Acta, 78 (2005), 563-567.
D. H. Rouvray, An introduction to the chemical applications of graph theory, Congress. Numerant., 55 (1986), 267-280. - N. J. A. Sloane, Apr 08 2012
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Marten J. ten Hoor, Formula for Success?, Education in Chemistry, 2005, 42(1), 10.
S. Wagner, Graph-theoretical enumeration and digital expansions: an analytic approach, Dissertation, Fakult. f. Tech. Math. u. Tech. Physik, Tech. Univ. Graz, Austria, Feb., 2006.
LINKS
Pontus von Brömssen, Table of n, a(n) for n = 0..1000 (terms n = 0..60 from N. J. A. Sloane)
M. van Almsick, H. Dolhaine and H. Honig, Efficient algorithms to enumerate isomers and diamutamers with more than one type of substituent, J. Chem. Info. and Computer Science, 40 (2000), 956-966.
Vijayakumar Ambat, Article about OEIS in Malayalam that mentions this sequence, Mathrubhumi (daily newspaper in Kerala State), circa Nov 20 2022.
R. Aringhieri, P. Hansen and F. Malucelli, Chemical Tree Enumeration Algorithms, Report TR-99-09, Dept. Informatica, Univ. Pisa, 1999.
A. T. Balaban, J. W. Kennedy and L. V. Quintas, The number of alkanes having n carbons and a longest chain of length d, J. Chem. Education, 65 (1988), 304-313.
L. Bytautas and D. J. Klein, Chemical combinatorics for alkane-isomer enumeration and more, J. Chem. Inf. Comput. Sci., 38 (1998), 1063-1078.
P. Flajolet and R. Sedgewick, Analytic Combinatorics, 2009; see page 478
Alfred W. Francis, Numbers of Isomeric Alkylbenzenes, J. Am. Chem. Soc., 69:6 (1947), pp. 1536-1537.
F. Harary and R. Z. Norman, Dissimilarity characteristic theorems for graphs, Proc. Amer. Math. Soc. 11 (1960), 332-334.
H. R. Henze and C. M. Blair, The number of isomeric hydrocarbons of the methane series, J. Amer. Chem. Soc., 53 (8) (1931), 3077-3085.
H. R. Henze and C. M. Blair, The number of isomeric hydrocarbons of the methane series, J. Amer. Chem. Soc., 53 (1931), 3077-3085. (Annotated scanned copy)
H. R. Henze and C. M. Blair, The number of structurally isomeric Hydrocarbons of the Ethylene Series, J. Amer. Chem. Soc., 55 (2) (1933), 680-686.
F. Hermann, Ueber das Problem, die Anzahl der isomeren Paraffine der Formel C_n H_{2n+2} zu bestimmung, Chem. Ber., 13 (1880), 792. [I (1880), Annotated scanned copy]
F. Hermann, Entgegnung, Chem. Ber., 31 (1898), 91. [III (1898), Annotated scanned copy]
Michael A. Kappler, GENSMI: Exhaustive Enumeration of Simple Graphs. Daylight CIS, Inc., EuroMUG '04;4-Nov 05 2004.
E. V. Konstantinova and M. V. Vidyuk, Discriminating tests of information and topological indices; animals and trees; J. Chem. Inf. Comput. Sci., 43 (2003), 1860-1871.
J. Lederberg, Letter to N. J. A. Sloane, Aug 13 1971
J. Lederberg, The topology of molecules, in The Mathematical Sciences. Cambridge, Mass.: MIT Press, 1969, pages 37-51. [Annotated scanned copy]
J. Lederberg, Dendral-64, I, Report to NASA, Dec 1964 [Annotated scanned copy]
J. Lederberg, Dendral-64, II, Report to NASA, Dec 1965 [Annotated scanned copy]
J. Lederberg, Dendral-64, III, Report to NASA, Dec 1968 [Annotated scanned copy]
P. Leroux and B. Miloudi, Généralisations de la formule d'Otter, Ann. Sci. Math. Québec, Vol. 16, No. 1 (1992), pp. 53-80.
P. Leroux and B. Miloudi, Généralisations de la formule d'Otter, Ann. Sci. Math. Québec, Vol. 16, No. 1, pp. 53-80, 1992. (Annotated scanned copy)
S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber. 30 (1897), 1917-1926.
S. M. Losanitsch, Die Isomerie-Arten bei den Homologen der Paraffin-Reihe, Chem. Ber. 30 (1897), 1917-1926. (Annotated scanned copy)
S. M. Losanitsch, Bemerkungen zu der Hermasnnschen Mitteillung: Die Anzahl..., Chem. Ber., 30 (1897), 3059-3060 [Annotated scanned copy]
A. Masoumi, M. Antoniazzi, and M. Soutchanski, Modeling organic chemistry and planning organic synthesis, GCAI 2015. Global Conference on Artificial Intelligence (2015), pp. 176-195.
W. R. Mueller et al., Molecular topological index, J. Chem. Inf. Comput. Sci., 30 (1990),160-163.
R. Otter, The number of trees, Ann. of Math. (2) 49 (1948), 583-599 discusses asymptotics.
D. Perry, The number of structural isomers of certain homologs of methane and methanol, J. Amer. Chem. Soc. 54 (1932), 2918-2920. [Gives a(60) correctly] (Annotated scanned copy)
G. Polya, Algebraische Berechnung der Anzahl der Isomeren einiger organischer Verbindungen, Zeit. f. Kristall., 93 (1936), 415-443. (Annotated scanned copy)
E. M. Rains and N. J. A. Sloane, On Cayley's Enumeration of Alkanes (or 4-Valent Trees), J. Integer Sequences, Vol. 2 (1999), Article 99.1.1.
R. C. Read, The Enumeration of Acyclic Chemical Compounds, pp. 25-61 of A. T. Balaban, ed., Chemical Applications of Graph Theory, Ac. Press, 1976. [Annotated scanned copy] See p. 28.
R. W. Robinson, F. Harary and A. T. Balaban, Numbers of chiral and achiral alkanes and monosubstituted alkanes, Tetrahedron 32 (3) (1976), 355-361.
R. W. Robinson, F. Harary and A. T. Balaban, Numbers of chiral and achiral alkanes and monosubstituted alkanes, Tetrahedron 32 (3) (1976), 355-361. (Annotated scanned copy)
Hugo Schiff, Zur Statistik chemischer Verbindungen, Berichte der Deutschen Chemischen Gesellschaft, Vol. 8, pp. 1542-1547, 1875. [Annotated scanned copy]
Nicholas I. Shepherd-Barron, Asymptotic period relations for Jacobian elliptic surfaces, arXiv:1904.13344 [math.AG], 2019.
N. J. A. Sloane, "A Handbook of Integer Sequences" Fifty Years Later, arXiv:2301.03149 [math.NT], 2023, p. 5.
N. Trinajstich, Z. Jerievi, J. V. Knop, W. R. Muller and K. Szymanski, Computer Generation of Isomeric Structures, Pure & Appl. Chem., Vol. 55, No. 2, pp. 379-390, 1983.
Sylvia Wenmackers, Huiswerk (met bijna twintig jaar vertraging) (in Dutch), 2015.
FORMULA
a(n) = A010372(n) + A010373(n/2) for n even, a(n) = A010372(n) for n odd.
Also equals A000022 + A000200 (n>0), both of which have known generating functions. Also g.f. = A000678(x) - A000599(x) + A000598(x^2) = (x + x^2 + 2x^3 + ...) - (x^2 + x^3 + 3x^4 + ...) + (1 + x^2 + x^4 + ...) = 1 + x + x^2 + x^3 + 2x^4 + 3x^5 + ...
G.f.: B(x) - cycle_index(S2,-B(x)) + x * cycle_index(S4,B(x)) = B(x) - (B(x)^2 - B(x^2)) / 2 + x * (B(x)^4 + 6*B(x)^2*B(x^2) + 8*B(x)*B(x^3) + 3*B(x^2)^2 + 6*B(x^4)) / 24, where B(x) = 1 + x * cycle_index(S3,B(x)) = 1 + x * (B(x)^3 + 3*B(x)*B(x^2) + 2*B(x^3)) / 6 is the generating function for A000598. - Robert A. Russell, Jan 16 2023
EXAMPLE
a(6)=5 because hexane has five isomers: n-hexane; 2-methylpentane; 3-methylpentane; 2,2-dimethylbutane; 2,3-dimethylbutane. - Michael Lugo (mtlugo(AT)mit.edu), Mar 15 2003 (corrected by Andrey V. Kulsha, Sep 22 2011)
MAPLE
A000602 := proc(n)
if n=0 then
1
else
end if;
end proc:
MATHEMATICA
n = 40; (* algorithm from Rains and Sloane *)
S3[f_, h_, x_] := f[h, x]^3/6 + f[h, x] f[h, x^2]/2 + f[h, x^3]/3;
S4[f_, h_, x_] := f[h, x]^4/24 + f[h, x]^2 f[h, x^2]/4 + f[h, x] f[h, x^3]/3 + f[h, x^2]^2/8 + f[h, x^4]/4;
T[-1, z_] := 1; T[h_, z_] := T[h, z] = Table[z^k, {k, 0, n}].Take[CoefficientList[z^(n+1) + 1 + S3[T, h-1, z]z, z], n+1];
Sum[Take[CoefficientList[z^(n+1) + S4[T, h-1, z]z - S4[T, h-2, z]z - (T[h-1, z] - T[h-2, z]) (T[h-1, z]-1), z], n+1], {h, 1, n/2}] + PadRight[{1, 1}, n+1] + Sum[Take[CoefficientList[z^(n+1) + (T[h, z] - T[h-1, z])^2/2 + (T[h, z^2] - T[h-1, z^2])/2, z], n+1], {h, 0, n/2}] (* Robert A. Russell, Sep 15 2018 *)
b[n_, i_, t_, k_] := b[n, i, t, k] = If[i<1, 0, Sum[Binomial[b[i-1, i-1,
k, k] + j-1, j]* b[n-i*j, i-1, t-j, k], {j, 0, Min[t, n/i]}]];
b[0, i_, t_, k_] = 1; m = 3; (* m = maximum children *) n = 40;
gf[x_] = 1 + Sum[b[j-1, j-1, m, m]x^j, {j, 1, n}]; (* G.f. for A000598 *)
ci[x_] = SymmetricGroupIndex[m+1, x] /. x[i_] -> gf[x^i];
CoefficientList[Normal[Series[gf[x] - (gf[x]^2 - gf[x^2])/2 + x ci[x],
{x, 0, n}]], x] (* Robert A. Russell, Jan 19 2023 *)
CROSSREFS
Column k=4 of A144528.
A000602 = A000022 + A000200 for n>0.
KEYWORD
nonn,easy,core,nice
EXTENSIONS
Additional comments from Steve Strand (snstrand(AT)comcast.net), Aug 20 2003
STATUS
approved
Number of n-node unrooted steric quartic trees; number of n-carbon alkanes C(n)H(2n+2) taking stereoisomers into account.
(Formerly M0732 N0274)
+10
15
1, 1, 1, 1, 2, 3, 5, 11, 24, 55, 136, 345, 900, 2412, 6563, 18127, 50699, 143255, 408429, 1173770, 3396844, 9892302, 28972080, 85289390, 252260276, 749329719, 2234695030, 6688893605, 20089296554, 60526543480, 182896187256, 554188210352, 1683557607211, 5126819371356, 15647855317080, 47862049187447, 146691564302648, 450451875783866, 1385724615285949
OFFSET
0,5
COMMENTS
Trees are unrooted; nodes are unlabeled and have degree <= 4.
Regarding stereoisomers as different means that only the alternating group A_4 acts at each node, not the full symmetric group S_4. See A000602 for the analogous sequence when stereoisomers are not counted as different.
Has also been described as steric planted trees (paraffins) with n nodes.
REFERENCES
F. Bergeron, G. Labelle and P. Leroux, Combinatorial Species and Tree-Like Structures, Camb. 1998, p. 290.
R. Davies and P. J. Freyd, C_{167}H_{336} is The Smallest Alkane with More Realizable Isomers than the Observable Universe has Particles, Journal of Chemical Education, Vol. 66, 1989, pp. 278-281.
J. L. Faulon, D. Visco and D. Roe, Enumerating Molecules, In: Reviews in Computational Chemistry Vol. 21, Ed. K. Lipkowitz, Wiley-VCH, 2005.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
C. M. Blair and H. R. Henze, The number of stereoisomeric and non-stereoisomeric paraffin hydrocarbons, J. Amer. Chem. Soc., 54 (1932), 1538-1545.
C. M. Blair and H. R. Henze, The number of stereoisomeric and non-stereoisomeric paraffin hydrocarbons, J. Amer. Chem. Soc., 54 (4) (1932), 1538-1545. (Annotated scanned copy)
L. Bytautats and D. J. Klein, Alkane Isomere Combinatorics: Stereostructure enumeration and graph-invariant and molecylar-property distributions, J. Chem. Inf. Comput. Sci 39 (1999) 803-818, Table 1.
P. Leroux and B. Miloudi, Généralisations de la formule d'Otter, Ann. Sci. Math. Québec, Vol. 16, No. 1, pp. 53-80, 1992.
P. Leroux and B. Miloudi, Généralisations de la formule d'Otter, Ann. Sci. Math. Québec, Vol. 16, No. 1, pp. 53-80, 1992. (Annotated scanned copy)
R. C. Read, The Enumeration of Acyclic Chemical Compounds, pp. 25-61 of A. T. Balaban, ed., Chemical Applications of Graph Theory, Ac. Press, 1976. [Annotated scanned copy] See p. 44.
R. W. Robinson, F. Harary and A. T. Balaban, The numbers of chiral and achiral alkanes and monosubstituted alkanes, Tetrahedron 32 (1976), 355-361.
R. W. Robinson, F. Harary and A. T. Balaban, Numbers of chiral and achiral alkanes and monosubstituted alkanes, Tetrahedron 32 (3) (1976), 355-361. (Annotated scanned copy)
FORMULA
Blair and Henze give recurrence (see the Maple code).
For even n a(n) = A086194(n) + A086200(n/2), for odd n a(n) = A086194(n).
MAPLE
s[0]:=1:s[1]:=1:for n from 0 to 60 do s[n+1/3]:=0 od:for n from 0 to 60 do s[n+2/3]:=0 od:for n from 0 to 60 do s[n+1/4]:=0 od:for n from 0 to 60 do s[n+1/2]:=0 od:for n from 0 to 60 do s[n+3/4]:=0 od:s[ -1]:=0:for n from 1 to 50 do s[n+1]:=(2*n/3*s[n/3]+sum(j*s[j]*sum(s[k]*s[n-j-k], k=0..n-j), j=1..n))/n od:for n from 0 to 50 do q[n]:=sum(s[i]*s[n-i], i=0..n) od:for n from 0 to 50 do q[n-1/2]:=0 od:for n from 0 to 40 do f:=n->(3*s[n]+2*s[n/2]+q[(n-1)/2]-q[n]+2*sum(s[j]*s[n-3*j-1], j=0..n/3))/4 od:seq(f(n), n=0..38); # the formulas for s[n+1] and f(n) are from eq.(4) and (12), respectively, of the Robinson et al. paper; s[n]=A000625(n), f(n)=A000628(n); q[n] is the convolution of s[n] with itself; # Emeric Deutsch
MATHEMATICA
max = 40; s[0] = s[1] = 1; s[_] = 0; For[n=1, n <= max, n++, s[n+1] = (2*n/3*s[n/3] + Sum[j*s[j]*Sum[s[k]*s[n-j-k], {k, 0, n-j}], {j, 1, n}])/n]; For[n=0, n <= max, n++, q[n] = Sum[s[i]*s[n-i], {i, 0, n}]]; For[n=0, n <= max, n++, q[n-1/2]=0]; f[n_] := (3*s[n] + 2*s[n/2] + q[(n-1)/2] - q[n] + 2*Sum[s[j]*s[n-3*j-1], {j, 0, n/3}])/4; Table[f[n], {n, 0, max}] (* Jean-François Alcover, Dec 29 2014, after Emeric Deutsch *)
KEYWORD
nonn,easy,nice
EXTENSIONS
Additional comments from Steve Strand (snstrand(AT)comcast.net), Aug 20 2003
More terms from Emeric Deutsch, May 16 2004
STATUS
approved
Number of bicentered hydrocarbons with n atoms.
(Formerly M2288 N0905)
+10
9
0, 0, 1, 0, 1, 1, 3, 3, 9, 15, 38, 73, 174, 380, 915, 2124, 5134, 12281, 30010, 73401, 181835, 452165, 1133252, 2851710, 7215262, 18326528, 46750268, 119687146, 307528889, 792716193, 2049703887, 5314775856, 13817638615, 36012395538
OFFSET
0,7
REFERENCES
Busacker and Saaty, Finite Graphs and Networks, 1965, p. 201 (they reproduce Cayley's mistakes).
A. Cayley, "On the mathematical theory of isomers", Phil. Mag. vol. 67 (1874), 444-447.
A. Cayley, "Über die analytischen Figuren, welche in der Mathematik Baeume genannt werden...", Chem. Ber. 8 (1875), 1056-1059.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
MAPLE
N := 45: for i from 1 to N do tt := t[ i ]-t[ i-1 ]; b[ i ] := series((tt^2+subs(z=z^2, tt))/2+O(z^(N+1)), z, 200): od: i := 'i': bicent := series(sum(b[ i ], i=1..N), z, 200); G000200 := bicent; A000200 := n->coeff(G000200, z, n);
# Maple code continues from A000022: bicentered == unordered pair of ternary trees of the same height:
MATHEMATICA
n = 40; (* algorithm from Rains and Sloane *)
S3[f_, h_, x_] := f[h, x]^3/6 + f[h, x] f[h, x^2]/2 + f[h, x^3]/3;
T[-1, z_] := 1; T[h_, z_] := T[h, z] = Table[z^k, {k, 0, n}].Take[CoefficientList[z^(n+1) + 1 + S3[T, h-1, z]z, z], n+1];
Sum[Take[CoefficientList[z^(n+1) + (T[h, z] - T[h-1, z])^2/2 + (T[h, z^2] - T[h-1, z^2])/2, z], n+1], {h, 0, n/2}] (* Robert A. Russell, Sep 15 2018 *)
CROSSREFS
A000200 = A000602 - A000022 for n>0.
Cf. A010373.
KEYWORD
nonn,nice
AUTHOR
N. J. A. Sloane, E. M. Rains (rains(AT)caltech.edu)
STATUS
approved
Number of unrooted quartic trees with n (unlabeled) nodes and possessing a centroid; number of n-carbon alkanes C(n)H(2n +2) with a centroid ignoring stereoisomers.
+10
7
1, 0, 1, 1, 3, 2, 9, 8, 35, 39, 159, 202, 802, 1078, 4347, 6354, 24894, 38157, 148284, 237541, 910726, 1511717, 5731580, 9816092, 36797588, 64658432, 240215803, 431987953, 1590507121, 2917928218, 10660307791, 19910436898
OFFSET
1,5
COMMENTS
The degree of each node is <= 4.
A centroid is a node with less than n/2 nodes in each of the incident subtrees, where n is the number of nodes in the tree. If a centroid exists it is unique.
Ignoring stereoisomers means that the children of a node are unordered. They can be permuted in any way and it is still the same tree. See A086194 for the analogous sequence with stereoisomers counted.
REFERENCES
F. Harary, Graph Theory, p. 36, for definition of centroid.
MAPLE
with(combstruct): Alkyl := proc(n) combstruct[count]([ U, {U=Prod(Z, Set(U, card<=3))}, unlabeled ], size=n) end:
centeredHC := proc(n) option remember; local f, k, z, f2, f3, f4; f := 1 + add(Alkyl(k)*z^k, k=0..iquo(n-1, 2));
f2 := series(subs(z=z^2, f), z, n+1); f3 := series(subs(z=z^3, f), z, n+1); f4 := series(subs(z=z^4, f), z, n+1);
f := series(f*f3/3+f4/4+f2^2/8+f2*f^2/4+f^4/24, z, n+1); coeff(f, z, n-1) end: seq(centeredHC(n), n=1..32);
CROSSREFS
A000602(n) = a(n) + A010373(n/2) for n even, A000602(n) = a(n) for n odd.
KEYWORD
nonn,easy,nice
EXTENSIONS
Description revised by Steve Strand (snstrand(AT)comcast.net), Aug 20 2003
STATUS
approved
Number of unrooted steric quartic trees with 2n (unlabeled) nodes and possessing a bicentroid; number of 2n-carbon alkanes C(2n)H(4n +2) with a bicentroid when stereoisomers are regarded as different.
+10
5
1, 3, 15, 66, 406, 2775, 19900, 152076, 1206681, 9841266, 82336528, 702993756, 6105180250, 53822344278, 480681790786, 4342078862605, 39621836138886, 364831810979041, 3386667673687950, 31669036266203766
OFFSET
1,2
COMMENTS
The degree of each node is <= 4.
A bicentroid is an edge which connects two subtrees of exactly m/2 nodes, where m is the number of nodes in the tree. If a bicentroid exists it is unique. Clearly trees with an odd number of nodes cannot have a bicentroid.
Regarding stereoisomers as different means that only the alternating group A_4 acts at each node, not the full symmetric group S_4. See A010373 for the analogous sequence when stereoisomers are not counted as different.
FORMULA
G.f.: replace each term x in g.f. for A000625 by x(x+1)/2. Interpretation: ways to pick 2 specific radicals (order not important) from all n carbon radicals is number of 2n carbon bicentered alkanes (join the two radicals with an edge).
CROSSREFS
For even n A000628(n) = A086194(n) + a(n/2), for odd n A000628(n) = A086194(n), since every tree has either a centroid or a bicentroid but not both.
KEYWORD
nonn
AUTHOR
Steve Strand (snstrand(AT)comcast.net), Aug 28 2003
STATUS
approved

Search completed in 0.017 seconds