[go: up one dir, main page]

login
Search: a007865 -id:a007865
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number of subsets of {1..n} containing all of their pairwise sums <= n.
+10
92
1, 2, 3, 5, 7, 12, 16, 27, 37, 58, 80, 131, 171, 277, 380, 580, 785, 1250, 1655, 2616, 3516, 5344, 7257, 11353, 14931, 23204, 31379, 47511, 63778, 98681, 130503, 201357, 270038, 407429, 548090, 840171, 1110429, 1701872, 2284325, 3440337, 4601656
OFFSET
0,2
COMMENTS
The summands are allowed to be equal. The case where they must be distinct is A326080. If A007865 counts sum-free sets, this sequence counts sum-closed sets. This is different from sum-full sets (A093971).
From Gus Wiseman, Jul 08 2019: (Start)
Also the number of subsets of {1..n} containing no sum of any multiset of the elements. For example, the a(0) = 1 through a(6) = 16 subsets are:
{} {} {} {} {} {} {}
{1} {1} {1} {1} {1} {1}
{2} {2} {2} {2} {2}
{3} {3} {3} {3}
{2,3} {4} {4} {4}
{2,3} {5} {5}
{3,4} {2,3} {6}
{2,5} {2,3}
{3,4} {2,5}
{3,5} {3,4}
{4,5} {3,5}
{3,4,5} {4,5}
{4,6}
{5,6}
{3,4,5}
{4,5,6}
(End)
LINKS
Fausto A. C. Cariboni, Table of n, a(n) for n = 0..100
FORMULA
For n > 0, a(n) = A103580(n) + 1.
EXAMPLE
The a(0) = 1 through a(6) = 16 subsets:
{} {} {} {} {} {} {}
{1} {2} {2} {3} {3} {4}
{1,2} {3} {4} {4} {5}
{2,3} {2,4} {5} {6}
{1,2,3} {3,4} {2,4} {3,6}
{2,3,4} {3,4} {4,5}
{1,2,3,4} {3,5} {4,6}
{4,5} {5,6}
{2,4,5} {2,4,6}
{3,4,5} {3,4,6}
{2,3,4,5} {3,5,6}
{1,2,3,4,5} {4,5,6}
{2,4,5,6}
{3,4,5,6}
{2,3,4,5,6}
{1,2,3,4,5,6}
The a(7) = 27 subsets:
{} {4} {36} {246} {2467} {24567} {234567} {1234567}
{5} {45} {356} {3467} {34567}
{6} {46} {367} {3567}
{7} {47} {456} {4567}
{56} {457}
{57} {467}
{67} {567}
MATHEMATICA
Table[Length[Select[Subsets[Range[n]], SubsetQ[#, Select[Plus@@@Tuples[#, 2], #<=n&]]&]], {n, 0, 10}]
KEYWORD
nonn
AUTHOR
Gus Wiseman, Jun 05 2019
STATUS
approved
Number of strict integer partitions of n such that no part can be written as a nonnegative linear combination of the others.
+10
81
1, 1, 1, 1, 1, 2, 1, 3, 2, 3, 3, 5, 3, 6, 5, 7, 6, 9, 7, 11, 10, 14, 12, 16, 15, 20, 17, 24, 22, 27, 29, 32, 30, 41, 36, 49, 45, 50, 52, 65, 63, 70, 77, 80, 83, 104, 98, 107, 116, 126, 134, 152, 148, 162, 180, 196, 195, 227, 227, 238, 272, 271, 293, 333, 325
OFFSET
0,6
COMMENTS
A way of writing n as a (presumed nonnegative) linear combination of a finite sequence y is any sequence of pairs (k_i,y_i) such that k_i >= 0 and Sum k_i*y_i = n. For example, the pairs ((3,1),(1,1),(1,1),(0,2)) are a way of writing 5 as a linear combination of (1,1,1,2), namely 5 = 3*1 + 1*1 + 1*1 + 0*2. Of course, there are A000041(n) ways to write n as a linear combination of (1..n).
EXAMPLE
The a(16) = 6 through a(22) = 12 strict partitions:
(16) (17) (18) (19) (20) (21) (22)
(9,7) (9,8) (10,8) (10,9) (11,9) (12,9) (13,9)
(10,6) (10,7) (11,7) (11,8) (12,8) (13,8) (14,8)
(11,5) (11,6) (13,5) (12,7) (13,7) (15,6) (15,7)
(13,3) (12,5) (14,4) (13,6) (14,6) (16,5) (16,6)
(7,5,4) (13,4) (7,6,5) (14,5) (17,3) (17,4) (17,5)
(14,3) (8,7,3) (15,4) (8,7,5) (19,2) (18,4)
(15,2) (16,3) (9,6,5) (11,10) (19,3)
(7,6,4) (17,2) (9,7,4) (8,7,6) (12,10)
(8,6,5) (11,5,4) (9,7,5) (9,7,6)
(9,6,4) (10,7,4) (9,8,5)
(10,8,3) (7,6,5,4)
(11,6,4)
(11,7,3)
MATHEMATICA
combs[n_, y_]:=With[{s=Table[{k, i}, {k, y}, {i, 0, Floor[n/k]}]}, Select[Tuples[s], Total[Times@@@#]==n&]];
Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&And@@Table[combs[#[[k]], Delete[#, k]]=={}, {k, Length[#]}]&]], {n, 0, 15}]
PROG
(Python)
from sympy.utilities.iterables import partitions
def A364350(n):
if n <= 1: return 1
alist, c = [set(tuple(sorted(set(p))) for p in partitions(i)) for i in range(n)], 1
for p in partitions(n, k=n-1):
if max(p.values(), default=0)==1:
s = set(p)
if not any(set(t).issubset(s-{q}) for q in s for t in alist[q]):
c += 1
return c # Chai Wah Wu, Sep 23 2023
CROSSREFS
For sums of subsets instead of combinations of partitions we have A151897.
For sums instead of combinations we have A237667, binary A236912.
For subsets instead of partitions we have A326083, complement A364914.
The complement in strict partitions is A364839, non-strict A364913.
A more strict variation is A364915.
The case of all positive coefficients is A365006.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A108917 counts knapsack partitions, ranks A299702.
A116861 and A364916 count linear combinations of strict partitions.
A323092 (ranks A320340) and A120641 count double-free partitions.
A364912 counts linear combinations of partitions of k.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Aug 15 2023
EXTENSIONS
More terms and offset corrected by Martin Fuller, Sep 11 2023
STATUS
approved
Number of strict integer partitions of n containing the sum of some subset of the parts. A variation of sum-full strict partitions.
+10
78
0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 3, 1, 4, 3, 8, 6, 11, 10, 17, 16, 26, 25, 39, 39, 54, 60, 82, 84, 116, 126, 160, 177, 222, 242, 302, 337, 402, 453, 542, 601, 722, 803, 936, 1057, 1234, 1373, 1601, 1793, 2056, 2312, 2658, 2950, 3395, 3789, 4281, 4814, 5452, 6048
OFFSET
0,11
COMMENTS
First differs from A316402 at a(16) = 11 due to (7,5,3,1).
EXAMPLE
The a(6) = 1 through a(16) = 11 partitions (A=10):
(321) . (431) . (532) (5321) (642) (5431) (743) (6432) (853)
(541) (651) (6421) (752) (6531) (862)
(4321) (5421) (7321) (761) (7431) (871)
(6321) (5432) (7521) (6532)
(6431) (9321) (6541)
(6521) (54321) (7432)
(7421) (7621)
(8321) (8431)
(8521)
(A321)
(64321)
MATHEMATICA
Table[Length[Select[IntegerPartitions[n], UnsameQ@@#&&Intersection[#, Total/@Subsets[#, {2, Length[#]}]]!={}&]], {n, 0, 30}]
CROSSREFS
The non-strict complement is A237667, ranks A364531.
The non-strict version is A237668, ranks A364532.
The complement in strict partitions is A364349, binary A364533.
The linear combination-free version is A364350.
For subsets of {1..n} we have A364534, complement A151897.
The binary version is A364670, allowing re-used parts A363226.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A108917 counts knapsack partitions, strict A275972, ranks A299702.
A236912 counts binary sum-free partitions, complement A237113.
A323092 counts double-free partitions, ranks A320340.
KEYWORD
nonn
AUTHOR
Gus Wiseman, Aug 01 2023
STATUS
approved
Number of sum-full subsets of {1,...,n}; subsets A such that there is a solution to x+y=z for x,y,z in A.
+10
75
0, 1, 2, 7, 16, 40, 86, 195, 404, 873, 1795, 3727, 7585, 15537, 31368, 63582, 127933, 257746, 517312, 1038993, 2081696, 4173322, 8355792, 16731799, 33484323, 67014365, 134069494, 268234688, 536562699, 1073326281, 2146849378, 4294117419, 8588623348, 17178130162
OFFSET
1,3
COMMENTS
In sumset notation, number of subsets A of {1,...,n} such that the intersection of A and 2A is nonempty.
A variation of binary sum-full sets where parts can be re-used, this sequence counts subsets of {1..n} containing a part equal to the sum of two other (possibly equal) parts. The complement is counted by A007865. The non-binary version is A364914. For non-re-usable parts we have A088809. - Gus Wiseman, Aug 14 2023
LINKS
Fausto A. C. Cariboni, Table of n, a(n) for n = 1..88
Eric Weisstein's World of Mathematics, Sum-Free Set
FORMULA
a(n) = 2^n - A007865(n).
EXAMPLE
The a(1) = 0 through a(5) = 16 subsets:
. {1,2} {1,2} {1,2} {1,2}
{1,2,3} {2,4} {2,4}
{1,2,3} {1,2,3}
{1,2,4} {1,2,4}
{1,3,4} {1,2,5}
{2,3,4} {1,3,4}
{1,2,3,4} {1,4,5}
{2,3,4}
{2,3,5}
{2,4,5}
{1,2,3,4}
{1,2,3,5}
{1,2,4,5}
{1,3,4,5}
{2,3,4,5}
{1,2,3,4,5}
MATHEMATICA
Table[Length[Select[Subsets[Range[n]], Intersection[#, Total/@Tuples[#, 2]]!={}&]], {n, 0, 10}] (* Gus Wiseman, Aug 14 2023 *)
CROSSREFS
The complement is counted by A007865.
The version without re-usable parts is A088809 (differences A364756), complement A085489 (differences A364755).
The non-binary version is A364914, complement A326083.
The non-binary version w/o re-usable parts is A364534, complement A151897.
The version for partitions is A363225:
- ranks A364348,
- strict A363226,
- non-binary A364839,
- without re-usable parts A237113,
- non-binary without re-usable parts A237668.
The complement for partitions is A364345:
- ranks A364347,
- strict A364346,
- non-binary A364350,
- without re-usable parts A236912,
- non-binary without re-usable parts A237667.
KEYWORD
nonn
AUTHOR
T. D. Noe, Apr 20 2004
EXTENSIONS
Terms a(31) and beyond from Fausto A. C. Cariboni, Oct 01 2020
STATUS
approved
Number of subsets of {1, 2, ..., n} such that no member is a sum of distinct other members.
+10
70
1, 2, 4, 7, 13, 22, 37, 60, 100, 155, 249, 381, 591, 889, 1365, 2009, 3047, 4453, 6602, 9567, 14151, 20228, 29654, 42302, 61369, 87108, 126066, 177580, 256039, 360304, 515740, 724069, 1036860, 1448746, 2069526, 2893311, 4117725, 5749540, 8186555
OFFSET
0,2
COMMENTS
This sequence and A085489 first differ at n = 7. a(7) = 60, A085489(7) = 61. A085489(7) includes {1, 2, 4, 7}, which is excluded from a(7) because 1+2+4 = 7.
If this sequence counts sum-free sets, A326080 counts sum-closed sets, which are different from sum-full sets (A093971). - Gus Wiseman, Jun 07 2019
LINKS
Fausto A. C. Cariboni, Table of n, a(n) for n = 0..85
EXAMPLE
a(4) = 13, including all subsets of {1, 2, 3, 4} except {1, 2, 3} (excluded
because 1+2 = 3), {1, 3, 4} (excluded because 1+3 = 4), and {1, 2, 3, 4} (excluded for both reasons.)
From Gus Wiseman, Jun 07 2019: (Start)
The a(0) = 1 through a(4) = 13 subsets:
{} {} {} {} {}
{1} {1} {1} {1}
{2} {2} {2}
{1,2} {3} {3}
{1,2} {4}
{1,3} {1,2}
{2,3} {1,3}
{1,4}
{2,3}
{2,4}
{3,4}
{1,2,4}
{2,3,4}
(End)
MATHEMATICA
Table[Length[Select[Subsets[Range[n]], Intersection[#, Plus@@@Subsets[#, {2, Length[#]}]]=={}&]], {n, 0, 10}] (* Gus Wiseman, Jun 07 2019 *)
KEYWORD
nonn
AUTHOR
David Wasserman, Apr 16 2008
EXTENSIONS
a(0) = 1 prepended by Gus Wiseman, Jun 07 2019
STATUS
approved
Number of partitions of n such that some part is a sum of two other parts.
+10
65
0, 0, 0, 0, 1, 1, 3, 3, 8, 10, 17, 22, 37, 47, 71, 91, 133, 170, 236, 301, 408, 515, 686, 860, 1119, 1401, 1798, 2232, 2829, 3495, 4378, 5381, 6682, 8165, 10060, 12238, 14958, 18116, 22018, 26533, 32071, 38490, 46265, 55318, 66193, 78843, 93949, 111503, 132326
OFFSET
0,7
COMMENTS
These are partitions containing the sum of some 2-element submultiset of the parts, a variation of binary sum-full partitions where parts cannot be re-used, ranked by A364462. The complement is counted by A236912. The non-binary version is A237668. For re-usable parts we have A363225. - Gus Wiseman, Aug 10 2023
FORMULA
a(n) = A000041(n) - A236912(n).
EXAMPLE
Of the 11 partitions of 6, only these 3 include a part that is a sum of two other parts: [3,2,1], [2,2,1,1], [2,1,1,1,1]. Thus, a(6) = 3.
From Gus Wiseman, Aug 09 2023: (Start)
The a(0) = 0 through a(9) = 10 partitions:
. . . . (211) (2111) (321) (3211) (422) (3321)
(2211) (22111) (431) (4221)
(21111) (211111) (3221) (4311)
(4211) (5211)
(22211) (32211)
(32111) (42111)
(221111) (222111)
(2111111) (321111)
(2211111)
(21111111)
(End)
MATHEMATICA
z = 20; t = Map[Count[Map[Length[Cases[Map[Total[#] &, Subsets[#, {2}]], Apply[Alternatives, #]]] &, IntegerPartitions[#]], 0] &, Range[z]] (* A236912 *)
u = PartitionsP[Range[z]] - t (* A237113, Peter J. C. Moses, Feb 03 2014 *)
Table[Length[Select[IntegerPartitions[n], Intersection[#, Total/@Subsets[#, {2}]]!={}&]], {n, 0, 30}] (* Gus Wiseman, Aug 09 2023 *)
CROSSREFS
The complement for subsets is A085489, with re-usable parts A007865.
For subsets of {1..n} we have A088809, with re-usable parts A093971.
The complement is counted by A236912, ranks A364461.
The non-binary complement is A237667, ranks A364531.
The non-binary version is A237668, ranks A364532.
With re-usable parts we have A363225, ranks A364348.
The complement with re-usable parts is A364345, ranks A364347.
These partitions have ranks A364462.
The strict case is A364670, with re-usable parts A363226.
A000041 counts integer partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A108917 counts knapsack partitions, ranks A299702.
A323092 counts double-free partitions, ranks A320340.
KEYWORD
nonn
AUTHOR
Clark Kimberling, Feb 04 2014
EXTENSIONS
a(0)=0 prepended by Alois P. Heinz, Sep 17 2023
STATUS
approved
Number of subsets of {1, ..., n} that are not sum-free.
+10
62
0, 0, 0, 1, 3, 10, 27, 67, 154, 350, 763, 1638, 3450, 7191, 14831, 30398, 61891, 125557, 253841, 511818, 1029863, 2069341, 4153060, 8327646, 16687483, 33422562, 66916342, 133936603, 268026776, 536277032, 1072886163, 2146245056, 4293187682, 8587371116
OFFSET
0,5
COMMENTS
a(n) = 2^n - A085489(n); a non-sum-free subset contains at least one subset {u,v, w} with w=u+v.
A variation of binary sum-full sets where parts cannot be re-used, this sequence counts subsets of {1..n} with an element equal to the sum of two distinct others. The complement is counted by A085489. The non-binary version is A364534. For re-usable parts we have A093971. - Gus Wiseman, Aug 10 2023
LINKS
Fausto A. C. Cariboni, Table of n, a(n) for n = 0..75
Eric Weisstein's World of Mathematics, Sum-Free Set
Reinhard Zumkeller, Illustration of initial terms
EXAMPLE
From Gus Wiseman, Aug 10 2023: (Start)
The set S = {1,3,6,8} has pair-sums {4,7,9,11,14}, which are all missing from S, so it is not counted under a(8).
The set {1,4,6,7} has pair-sum 1 + 6 = 7, so is counted under a(7).
The a(1) = 0 through a(5) = 10 sets:
. . {1,2,3} {1,2,3} {1,2,3}
{1,3,4} {1,3,4}
{1,2,3,4} {1,4,5}
{2,3,5}
{1,2,3,4}
{1,2,3,5}
{1,2,4,5}
{1,3,4,5}
{2,3,4,5}
{1,2,3,4,5}
(End)
MATHEMATICA
Table[Length[Select[Subsets[Range[n]], Intersection[#, Total/@Subsets[#, {2}]]!={}&]], {n, 0, 10}] (* Gus Wiseman, Aug 10 2023 *)
CROSSREFS
The complement is counted by A085489, differences A364755.
With re-usable parts we have A093971, for partitions A363225.
The complement for partitions is A236912:
non-binary A237667,
ranks A364461,
strict A364533.
The version for partitions is A237113:
non-binary A237668,
ranks A364462,
strict A364670.
The non-binary version is A364534, complement A151897.
First differences are A364756.
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, Oct 19 2003
EXTENSIONS
Terms a(32) and beyond from Fausto A. C. Cariboni, Sep 28 2020
STATUS
approved
a(n) is the number of subsets of {1,...,n} containing no solutions to x+y=z with x and y distinct (one version of "sum-free subsets").
+10
60
1, 2, 4, 7, 13, 22, 37, 61, 102, 162, 261, 410, 646, 1001, 1553, 2370, 3645, 5515, 8303, 12470, 18713, 27811, 41244, 60962, 89733, 131870, 192522, 281125, 408680, 593880, 855661, 1238592, 1779614, 2563476, 3660084, 5255913, 7473380, 10696444, 15137517
OFFSET
0,2
COMMENTS
First differs from A151897 at a(7) = 61, A151897(7) = 60. The one subset counted under a(7) but not under A151897(7) is {1,2,4,7}. - Gus Wiseman, Jun 07 2019
LINKS
Fausto A. C. Cariboni, Table of n, a(n) for n = 0..75, (terms up to a(57) from Ben Burns)
Eric Weisstein's World of Mathematics, Sum-Free Set [Strictly speaking this link is not relevant, since it uses a different definition of "sum-free".]
FORMULA
a(n) = 2^n - A088809(n). - Reinhard Zumkeller, Oct 19 2003
EXAMPLE
From Gus Wiseman, Jun 07 2019: (Start)
The a(0) = 1 through a(4) = 13 subsets:
{} {} {} {} {}
{1} {1} {1} {1}
{2} {2} {2}
{1,2} {3} {3}
{1,2} {4}
{1,3} {1,2}
{2,3} {1,3}
{1,4}
{2,3}
{2,4}
{3,4}
{1,2,4}
{2,3,4}
The a(5) = 22 subsets:
{} {1} {1,2} {1,2,4}
{2} {1,3} {1,2,5}
{3} {1,4} {1,3,5}
{4} {1,5} {2,3,4}
{5} {2,3} {2,4,5}
{2,4} {3,4,5}
{2,5}
{3,4}
{3,5}
{4,5}
(End)
MATHEMATICA
Table[Length[Select[Subsets[Range[n]], Intersection[ #, Select[ Plus@@@ Subsets[ #, {2}], #<=n&]]=={}&]], {n, 0, 10}] (* Gus Wiseman, Jun 07 2019 *)
CROSSREFS
See A007865 for another version.
KEYWORD
nonn,nice
AUTHOR
Eric W. Weisstein, Jul 02 2003
EXTENSIONS
More terms from Reinhard Zumkeller, Jul 13 2003
Edited by David Wasserman, Apr 16 2008
a(0) = 1 prepended by Gus Wiseman, Jun 07 2019
STATUS
approved
Number of partitions of n such that no part is a sum of two other parts.
+10
58
1, 1, 2, 3, 4, 6, 8, 12, 14, 20, 25, 34, 40, 54, 64, 85, 98, 127, 149, 189, 219, 277, 316, 395, 456, 557, 638, 778, 889, 1070, 1226, 1461, 1667, 1978, 2250, 2645, 3019, 3521, 3997, 4652, 5267, 6093, 6909, 7943, 8982, 10291, 11609, 13251, 14947, 16984, 19104
OFFSET
0,3
COMMENTS
These are partitions containing the sum of no 2-element submultiset of the parts, a variation of binary sum-free partitions where parts cannot be re-used, ranked by A364461. The complement is counted by A237113. The non-binary version is A237667. For re-usable parts we have A364345. - Gus Wiseman, Aug 09 2023
FORMULA
a(n) = A000041(n) - A237113(n).
EXAMPLE
Of the 11 partitions of 6, only these 3 include a part that is a sum of two other parts: [3,2,1], [2,2,1,1], [2,1,1,1,1]. Thus, a(6) = 11 - 3 = 8.
From Gus Wiseman, Aug 09 2023: (Start)
The a(1) = 1 through a(8) = 14 partitions:
(1) (2) (3) (4) (5) (6) (7) (8)
(11) (21) (22) (32) (33) (43) (44)
(111) (31) (41) (42) (52) (53)
(1111) (221) (51) (61) (62)
(311) (222) (322) (71)
(11111) (411) (331) (332)
(3111) (421) (521)
(111111) (511) (611)
(2221) (2222)
(4111) (3311)
(31111) (5111)
(1111111) (41111)
(311111)
(11111111)
(End)
MATHEMATICA
z = 20; t = Map[Count[Map[Length[Cases[Map[Total[#] &, Subsets[#, {2}]], Apply[Alternatives, #]]] &, IntegerPartitions[#]], 0] &, Range[z]] (* A236912 *)
u = PartitionsP[Range[z]] - t (* A237113, Peter J. C. Moses, Feb 03 2014 *)
Table[Length[Select[IntegerPartitions[n], Intersection[#, Total/@Subsets[#, {2}]]=={}&]], {n, 0, 15}] (* Gus Wiseman, Aug 09 2023 *)
CROSSREFS
For subsets of {1..n} we have A085489, complement A088809.
The complement is counted by A237113, ranks A364462.
The non-binary version is A237667, ranks A364531.
The non-binary complement is A237668, ranks A364532.
The version with re-usable parts is A364345, ranks A364347.
The (strict) version for linear combinations of parts is A364350.
These partitions have ranks A364461.
The strict case is A364533, non-binary A364349.
The strict complement is A364670, with re-usable parts A363226.
A000041 counts partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A108917 counts knapsack partitions, ranks A299702.
A323092 counts double-free partitions, ranks A320340.
KEYWORD
nonn
AUTHOR
Clark Kimberling, Feb 01 2014
EXTENSIONS
a(0)=1 prepended by Alois P. Heinz, Sep 17 2023
STATUS
approved
Number of partitions of n such that no part is a sum of two or more other parts.
+10
57
1, 1, 2, 3, 4, 6, 7, 11, 12, 17, 19, 29, 28, 41, 42, 61, 61, 87, 85, 120, 117, 160, 156, 224, 216, 288, 277, 380, 363, 483, 474, 622, 610, 783, 755, 994, 986, 1235, 1191, 1549, 1483, 1876, 1865, 2306, 2279, 2806, 2732, 3406, 3413, 4091, 4013, 4991, 4895, 5872
OFFSET
0,3
COMMENTS
From Gus Wiseman, Aug 09 2023: (Start)
Includes all knapsack partitions (A108917), but first differs at a(12) = 28, A108917(12) = 25. The difference is accounted for by the non-knapsack partitions: (4332), (5331), (33222).
These are partitions not containing the sum of any non-singleton submultiset of the parts, a variation of non-binary sum-free partitions where parts cannot be re-used, ranked by A364531. The complement is counted by A237668. The binary version is A236912. For re-usable parts we have A364350.
(End)
EXAMPLE
For n = 6, the nonqualifiers are 123, 1113, 1122, 11112, leaving a(6) = 7.
From Gus Wiseman, Aug 09 2023: (Start)
The partition y = (5,3,1,1) has submultiset (3,1,1) with sum in y, so is not counted under a(10).
The partition y = (5,3,3,1) has no non-singleton submultiset with sum in y, so is counted under a(12).
The a(1) = 1 through a(8) = 12 partitions:
(1) (2) (3) (4) (5) (6) (7) (8)
(11) (21) (22) (32) (33) (43) (44)
(111) (31) (41) (42) (52) (53)
(1111) (221) (51) (61) (62)
(311) (222) (322) (71)
(11111) (411) (331) (332)
(111111) (421) (521)
(511) (611)
(2221) (2222)
(4111) (3311)
(1111111) (5111)
(11111111)
(End)
MATHEMATICA
Map[Count[Map[MemberQ[#, Apply[Alternatives, Map[Apply[Plus, #]&, DeleteDuplicates[DeleteCases[Subsets[#], _?(Length[#]<2&)]]]]]&, IntegerPartitions[#]], False]&, Range[20]] (* Peter J. C. Moses, Feb 10 2014 *)
Table[Length[Select[IntegerPartitions[n], Intersection[#, Total/@Subsets[#, {2, Length[#]}]]=={}&]], {n, 0, 15}] (* Gus Wiseman, Aug 09 2023 *)
CROSSREFS
For subsets of {1..n} we have A151897, binary A085489.
The binary version is A236912, ranks A364461.
The binary complement is A237113, ranks A364462.
The complement is counted by A237668, ranks A364532.
The binary version with re-usable parts is A364345, strict A364346.
The strict case is A364349, binary A364533.
These partitions have ranks A364531.
The complement for subsets is A364534, binary A088809.
A000041 counts partitions, strict A000009.
A008284 counts partitions by length, strict A008289.
A108917 counts knapsack partitions, ranks A299702.
A323092 counts double-free partitions, ranks A320340.
KEYWORD
nonn
AUTHOR
Clark Kimberling, Feb 11 2014
EXTENSIONS
a(21)-a(53) from Giovanni Resta, Feb 22 2014
STATUS
approved

Search completed in 0.099 seconds