[go: up one dir, main page]

login
Search: a007508 -id:a007508
     Sort: relevance | references | number | modified | created      Format: long | short | data
Lesser of twin primes.
(Formerly M2476 N0982)
+10
881
3, 5, 11, 17, 29, 41, 59, 71, 101, 107, 137, 149, 179, 191, 197, 227, 239, 269, 281, 311, 347, 419, 431, 461, 521, 569, 599, 617, 641, 659, 809, 821, 827, 857, 881, 1019, 1031, 1049, 1061, 1091, 1151, 1229, 1277, 1289, 1301, 1319, 1427, 1451, 1481, 1487, 1607
OFFSET
1,1
COMMENTS
Also, solutions to phi(n + 2) = sigma(n). - Conjectured by Jud McCranie, Jan 03 2001; proved by Reinhard Zumkeller, Dec 05 2002
The set of primes for which the weight as defined in A117078 is 3 gives this sequence except for the initial 3. - Rémi Eismann, Feb 15 2007
The set of lesser of twin primes larger than three is a proper subset of the set of primes of the form 3n - 1 (A003627). - Paul Muljadi, Jun 05 2008
It is conjectured that A113910(n+4) = a(n+2) for all n. - Creighton Dement, Jan 15 2009
I would like to conjecture that if f(x) is a series whose terms are x^n, where n represents the terms of sequence A001359, and if we inspect {f(x)}^5, the conjecture is that every term of the expansion, say a_n * x^n, where n is odd and at least equal to 15, has a_n >= 1. This is not true for {f(x)}^k, k = 1, 2, 3 or 4, but appears to be true for k >= 5. - Paul Bruckman (pbruckman(AT)hotmail.com), Feb 03 2009
A164292(a(n)) = 1; A010051(a(n) - 2) = 0 for n > 1. - Reinhard Zumkeller, Mar 29 2010
From Jonathan Sondow, May 22 2010: (Start)
About 15% of primes < 19000 are the lesser of twin primes. About 26% of Ramanujan primes A104272 < 19000 are the lesser of twin primes.
About 46% of primes < 19000 are Ramanujan primes. About 78% of the lesser of twin primes < 19000 are Ramanujan primes.
A reason for the jumps is in Section 7 of "Ramanujan primes and Bertrand's postulate" and in Section 4 of "Ramanujan Primes: Bounds, Runs, Twins, and Gaps". (End)
Primes generated by sequence A040976. - Odimar Fabeny, Jul 12 2010
Primes of the form 2*n - 3 with 2*n - 1 prime n > 2. Primes of the form (n^2 - (n-2)^2)/2 - 1 with (n^2 - (n-2)^2)/2 + 1 prime so sum of two consecutive odd numbers/2 - 1. - Pierre CAMI, Jan 02 2012
Conjecture: For any integers n >= m > 0, there are infinitely many integers b > a(n) such that the number Sum_{k=m..n} a(k)*b^(n-k) (i.e., (a(m), ..., a(n)) in base b) is prime; moreover, when m = 1 there is such an integer b < (n+6)^2. - Zhi-Wei Sun, Mar 26 2013
Except for the initial 3, all terms are congruent to 5 mod 6. One consequence of this is that no term of this sequence appears in A030459. - Alonso del Arte, May 11 2013
Aside from the first term, all terms have digital root 2, 5, or 8. - J. W. Helkenberg, Jul 24 2013
The sequence provides all solutions to the generalized Winkler conjecture (A051451) aside from all multiples of 6. Specifically, these solutions start from n = 3 as a(n) - 3. This gives 8, 14, 26, 38, 56, ... An example from the conjecture is solution 38 from twin prime pairs (3, 5), (41, 43). - Bill McEachen, May 16 2014
Conjecture: a(n)^(1/n) is a strictly decreasing function of n. Namely a(n+1)^(1/(n+1)) < a(n)^(1/n) for all n. This conjecture is true for all a(n) <= 1121784847637957. - Jahangeer Kholdi and Farideh Firoozbakht, Nov 21 2014
a(n) are the only primes, p(j), such that (p(j+m) - p(j)) divides (p(j+m) + p(j)) for some m > 0, where p(j) = A000040(j). For all such cases m=1. It is easy to prove, for j > 1, the only common factor of (p(j+m) - p(j)) and (p(j+m) + p(j)) is 2, and there are no common factors if j = 1. Thus, p(j) and p(j+m) are twin primes. Also see A067829 which includes the prime 3. - Richard R. Forberg, Mar 25 2015
Primes prime(k) such that prime(k)! == 1 (mod prime(k+1)) with the exception of prime(991) = 7841 and other unknown primes prime(k) for which (prime(k)+1)*(prime(k)+2)*...*(prime(k+1)-2) == 1 (mod prime(k+1)) where prime(k+1) - prime(k) > 2. - Thomas Ordowski and Robert Israel, Jul 16 2016
For the twin prime criterion of Clement see the link. In Ribenboim, pp. 259-260 a more detailed proof is given. - Wolfdieter Lang, Oct 11 2017
Conjecture: Half of the twin prime pairs can be expressed as 8n + M where M > 8n and each value of M is a distinct composite integer with no more than two prime factors. For example, when n=1, M=21 as 8 + 21 = 29, the lesser of a twin prime pair. - Martin Michael Musatov, Dec 14 2017
For a discussion of bias in the distribution of twin primes, see my article on the Vixra web site. - Waldemar Puszkarz, May 08 2018
Since 2^p == 2 (mod p) (Fermat's little theorem), these are primes p such that 2^p == q (mod p), where q is the next prime after p. - Thomas Ordowski, Oct 29 2019, edited by M. F. Hasler, Nov 14 2019
The yet unproved "Twin Prime Conjecture" states that this sequence is infinite. - M. F. Hasler, Nov 14 2019
Lesser of the twin primes are the set of elements that occur in both A162566, A275697. Proof: A prime p will only have integer solutions to both (p+1)/g(p) and (p-1)/g(p) when p is the lesser of a twin prime, where g(p) is the gap between p and the next prime, because gcd(p+1,p-1) = 2. - Ryan Bresler, Feb 14 2021
From Lorenzo Sauras Altuzarra, Dec 21 2021: (Start)
J. A. Hervás Contreras observed the subsequence 11, 311, 18311, 1518311, 421518311... (see the links), which led me to conjecture the following statements.
I. If i is an integer greater than 2, then there exist positive integers j and k such that a(j) equals the concatenation of 3k and a(i).
II. If k is a positive integer, then there exist positive integers i and j such that a(j) equals the concatenation of 3k and a(i).
III. If i, j, and r are positive integers such that i > 2 and a(j) equals the concatenation of r and a(i), then 3 divides r. (End)
REFERENCES
Milton Abramowitz and Irene A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 870.
T. M. Apostol, Introduction to Analytic Number Theory, Springer-Verlag, 1976, page 6.
P. Ribenboim, The New Book of Prime Number Records, Springer-Verlag NY 1996, pp. 259-260.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Milton Abramowitz and Irene A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
Abhinav Aggarwal, Zekun Xu, Oluwaseyi Feyisetan, and Nathanael Teissier, On Primes, Log-Loss Scores and (No) Privacy, arXiv:2009.08559 [cs.LG], 2020.
Chris K. Caldwell, First 100000 Twin Primes
Chris K. Caldwell, Twin Primes
Chris K. Caldwell, Largest known twin primes
Chris K. Caldwell, Twin primes
Chris K. Caldwell, The prime pages
P. A. Clement, Congruences for sets of primes, American Mathematical Monthly, vol. 56,1 (1949), 23-25.
Harvey Dubner, Twin Prime Statistics, Journal of Integer Sequences, Vol. 8 (2005), Article 05.4.2.
Andrew Granville and Greg Martin, Prime number races, arXiv:math/0408319 [math.NT], 2004; Amer. Math. Monthly, 113 (No. 1, 2006), 1-33.
José Antonio Hervás Contreras, ¿Nueva propiedad de los primos gemelos?
Thomas R. Nicely, Enumeration to 10^14 of the twin primes and Brun's constant, Virginia Journal of Science, 46:3 (Fall, 1995), 195-204.
Thomas R. Nicely, Enumeration to 10^14 of the twin primes and Brun's constant [Local copy, pdf only]
P. Shiu, A Diophantine Property Associated with Prime Twins, Experimental mathematics 14 (1) (2005).
Jonathan Sondow, Ramanujan primes and Bertrand's postulate, arXiv:0907.5232 [math.NT], 2009-2010; Amer. Math. Monthly, 116 (2009) 630-635.
Jonathan Sondow, J. W. Nicholson, and T. D. Noe, Ramanujan Primes: Bounds, Runs, Twins, and Gaps, arXiv:1105.2249 [math.NT], 2011; J. Integer Seq. 14 (2011) Article 11.6.2.
Jonathan Sondow and Emmanuel Tsukerman, The p-adic order of power sums, the Erdos-Moser equation, and Bernoulli numbers, arXiv:1401.0322 [math.NT], 2014; see section 4.
Terence Tao, Obstructions to uniformity and arithmetic patterns in the primes, arXiv:math/0505402 [math.NT], 2005.
Eric Weisstein's World of Mathematics, Twin Primes
FORMULA
a(n) = A077800(2n-1).
A001359 = { n | A071538(n-1) = A071538(n)-1 }; A071538(A001359(n)) = n. - M. F. Hasler, Dec 10 2008
A001359 = { prime(n) : A069830(n) = A087454(n) }. - Juri-Stepan Gerasimov, Aug 23 2011
a(n) = prime(A029707(n)). - R. J. Mathar, Feb 19 2017
MAPLE
select(k->isprime(k+2), select(isprime, [$1..1616])); # Peter Luschny, Jul 21 2009
A001359 := proc(n)
option remember;
if n = 1
then 3;
else
p := nextprime(procname(n-1)) ;
while not isprime(p+2) do
p := nextprime(p) ;
end do:
p ;
end if;
end proc: # R. J. Mathar, Sep 03 2011
MATHEMATICA
Select[Prime[Range[253]], PrimeQ[# + 2] &] (* Robert G. Wilson v, Jun 09 2005 *)
a[n_] := a[n] = (p = NextPrime[a[n - 1]]; While[!PrimeQ[p + 2], p = NextPrime[p]]; p); a[1] = 3; Table[a[n], {n, 51}] (* Jean-François Alcover, Dec 13 2011, after R. J. Mathar *)
nextLesserTwinPrime[p_Integer] := Block[{q = p + 2}, While[NextPrime@ q - q > 2, q = NextPrime@ q]; q]; NestList[nextLesserTwinPrime@# &, 3, 50] (* Robert G. Wilson v, May 20 2014 *)
Select[Partition[Prime[Range[300]], 2, 1], #[[2]]-#[[1]]==2&][[All, 1]] (* Harvey P. Dale, Jan 04 2021 *)
q = Drop[Prepend[p = Prime[Range[100]], 2], -1];
Flatten[q[[#]] & /@ Position[p - q, 2]] (* Horst H. Manninger, Mar 28 2021 *)
PROG
(PARI) A001359(n, p=3) = { while( p+2 < (p=nextprime( p+1 )) || n-->0, ); p-2}
/* The following gives a reasonably good estimate for any value of n from 1 to infinity; compare to A146214. */
A001359est(n) = solve( x=1, 5*n^2/log(n+1), 1.320323631693739*intnum(t=2.02, x+1/x, 1/log(t)^2)-log(x) +.5 - n)
/* The constant is A114907; the expression in front of +.5 is an estimate for A071538(x) */ \\ M. F. Hasler, Dec 10 2008
(Magma) [n: n in PrimesUpTo(1610) | IsPrime(n+2)]; // Bruno Berselli, Feb 28 2011
(Haskell)
a001359 n = a001359_list !! (n-1)
a001359_list = filter ((== 1) . a010051' . (+ 2)) a000040_list
-- Reinhard Zumkeller, Feb 10 2015
(Python)
from sympy import primerange, isprime
print([n for n in primerange(1, 2001) if isprime(n + 2)]) # Indranil Ghosh, Jul 20 2017
CROSSREFS
Subsequence of A003627.
Cf. A104272 (Ramanujan primes), A178127 (lesser of twin Ramanujan primes), A178128 (lesser of twin primes if it is a Ramanujan prime).
KEYWORD
nonn,nice,easy
STATUS
approved
Numbers n such that the n-th and the (n+1)-st primes are twin primes.
+10
76
2, 3, 5, 7, 10, 13, 17, 20, 26, 28, 33, 35, 41, 43, 45, 49, 52, 57, 60, 64, 69, 81, 83, 89, 98, 104, 109, 113, 116, 120, 140, 142, 144, 148, 152, 171, 173, 176, 178, 182, 190, 201, 206, 209, 212, 215, 225, 230, 234, 236, 253, 256, 262, 265, 268, 277
OFFSET
1,1
COMMENTS
Numbers m such that prime(m)^2 == 1 mod (prime(m) + prime(m + 1)). - Zak Seidov, Sep 18 2013
LINKS
FORMULA
a(n) = A107770(n) - 1. - Juri-Stepan Gerasimov, Dec 16 2009
MAPLE
A029707 := proc(n)
numtheory[pi](A001359(n)) ;
end proc:
seq(A029707(n), n=1..30); # R. J. Mathar, Feb 19 2017
MATHEMATICA
Select[ Range@300, PrimeQ[ Prime@# + 2] &] (* Robert G. Wilson v, Mar 11 2007 *)
Flatten[Position[Flatten[Differences/@Partition[Prime[Range[100]], 2, 1]], 2]](* Harvey P. Dale, Jun 05 2014 *)
PROG
(Sage)
def A029707(n) :
a = [ ]
for i in (1..n) :
if (nth_prime(i+1)-nth_prime(i) == 2) :
a.append(i)
return(a)
A029707(277) # Jani Melik, May 15 2014
CROSSREFS
Cf. A014574, A027833 (first differences), A007508. Equals PrimePi(A001359) (cf. A000720).
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Dec 11 1999
STATUS
approved
Numbers that are the product of a pair of twin primes.
+10
76
15, 35, 143, 323, 899, 1763, 3599, 5183, 10403, 11663, 19043, 22499, 32399, 36863, 39203, 51983, 57599, 72899, 79523, 97343, 121103, 176399, 186623, 213443, 272483, 324899, 359999, 381923, 412163, 435599, 656099, 675683, 685583, 736163
OFFSET
1,1
COMMENTS
Each entry is the product of p and p+2 where both p and p+2 are prime, i.e., the product of the lesser and greater of a twin prime pair.
Except for the first term, all entries have digital root 8. - Lekraj Beedassy, Jun 11 2004
The above statement follows from p > 3 => (p,p+2) = (6k-1,6k+1) => p*(p+2) = 36k^2 - 1 == 8 (mod 9), and A010888 === A010878 (mod 9). - M. F. Hasler, Jan 11 2013
Albert A. Mullin states that m is a product of twin primes iff phi(m)*sigma(m) = (m-3)*(m+1), where phi(m) = A000010(m) and sigma(m) = A000203(m). Of course, for a product of distinct primes p*q we know sigma(p*q) = (p+1)*(q+1) and if p, q, are twin primes, say q = p + 2, then sigma(p*q) = (p+1)*(q+1) = (p+1)*(p+3). - Jonathan Vos Post, Feb 21 2006
Also the area of twin prime rectangles. A twin prime rectangle is a rectangle whose sides are components of twin prime pairs. E.g., the twin prime pair (3,5) produces a 3 X 5 unit rectangle which has area 15 square units. - Cino Hilliard, Jul 28 2006
Except for 15, a product of twin primes is of the form 36k^2 - 1 (cf. A136017, A002822). - Artur Jasinski, Dec 12 2007
A072965(a(n)) = 1; A072965(m) mod A037074(n) > 0 for all m. - Reinhard Zumkeller, Jan 29 2008
The number of terms less than 10^(2n) is A007508(n). - Robert G. Wilson v, Feb 08 2012
If m is the product of twin primes, then sigma(m) = m + 1 + 2*sqrt(m + 1), phi(m) = m + 1 - 2*sqrt(m + 1). pmin(m) = sqrt(m + 1) - 1, pmax(m) = sqrt(m + 1) + 1. - Wesley Ivan Hurt, Jan 06 2013
Semiprimes of the form 4*k^2 - 1. - Vincenzo Librandi, Apr 13 2013
REFERENCES
Albert A. Mullin, "Bicomposites, twin primes and arithmetic progression", Abstract 04T-11-48, Abstracts of AMS, Vol. 25, No. 4, 2004, p. 795.
FORMULA
a(n) = A001359(n)*A006512(n). A000010(a(n))*A000203(a(n)) = (a(n)-3)*(a(n)+1). - Jonathan Vos Post, Feb 21 2006
a(n) = (A014574(n))^2 - 1. a(n+1) = (6*A002822(n))^2 - 1. - Lekraj Beedassy, Sep 02 2006
a(n) = A075369(n) - 1. - Reinhard Zumkeller, Feb 10 2015
Sum_{n>=1} 1/a(n) = A209328. - Amiram Eldar, Nov 20 2020
A000010(a(n)) == 0 (mod 8). - Darío Clavijo, Oct 26 2022
EXAMPLE
a(2)=35 because 5*7=35, that is (5,7) is the 2nd pair of twin primes.
MAPLE
ZL:=[]: for p from 1 to 863 do if (isprime(p) and isprime(p+2) ) then ZL:=[op(ZL), (p*(p+2))]; fi; od; print(ZL); # Zerinvary Lajos, Mar 07 2007
for i from 1 to 150 do if ithprime(i+1) = ithprime(i) + 2 then print({ithprime(i)*ithprime(i+1)}); fi; od; # Zerinvary Lajos, Mar 19 2007
MATHEMATICA
s = Select[ Prime@ Range@170, PrimeQ[ # + 2] &]; s(s + 2) (* Robert G. Wilson v, Feb 21 2006 *)
(* For checking large numbers, the following code is better. For instance, we could use the fQ function to determine that 229031718473564142083 is in this sequence. *) fQ[n_] := Block[{fi = FactorInteger[n]}, Last@# & /@ fi == {1, 1} && Differences[ First@# & /@ fi] == {2}]; Select[ Range[750000], fQ] (* Robert G. Wilson v, Feb 08 2012 *)
Times@@@Select[Partition[Prime[Range[500]], 2, 1], Last[#]-First[#]==2&] (* Harvey P. Dale, Oct 16 2012 *)
PROG
(PARI) g(n) = for(x=1, n, if(prime(x+1)-prime(x)==2, print1(prime(x)*prime(x+1)", "))) \\ Cino Hilliard, Jul 28 2006
(Magma) [p*(p+2): p in PrimesUpTo(1000) | IsPrime(p+2)]; // Bruno Berselli, Jul 08 2011
(Magma) IsSemiprime:=func<n | &+[d[2]: d in Factorization(n)] eq 2>; [s: n in [1..500] | IsSemiprime(s) where s is 4*n^2-1]; // Vincenzo Librandi, Apr 13 2013
(Haskell)
a037074 = subtract 1 . a075369 -- Reinhard Zumkeller, Feb 10 2015
-- Reinhard Zumkeller, Feb 10 2015, Aug 14 2011
CROSSREFS
Cf. A000010, A000203, A001359, A006512, A014574, A136017, A074480 (multiplicative closure), A209328.
Cf. A071700 (subsequence).
Cf. A075369.
KEYWORD
nice,nonn
AUTHOR
EXTENSIONS
More terms from Erich Friedman
STATUS
approved
Number of twin prime pairs (p, p+2) with p <= n.
+10
19
0, 0, 1, 1, 2, 2, 2, 2, 2, 2, 3, 3, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 5, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 6, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 7, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8, 8
OFFSET
1,5
COMMENTS
The convention is followed that a twin prime is <= n if its smaller member is <= n.
Except for (3, 5), every pair of twin primes is congruent (-1, +1) (mod 6). - Daniel Forgues, Aug 05 2009
This function is sometimes known as pi_2(n). If this name is used, there is no obvious generalization for pi_k(n) for k > 2. - Franklin T. Adams-Watters, Jun 01 2014
REFERENCES
S. Lang, The Beauty of Doing Mathematics, pp. 12-15; 21-22, Springer-Verlag NY 1985.
LINKS
Eric Weisstein's World of Mathematics, Twin Primes.
EXAMPLE
a(30) = 5, since (29,31) is included along with (3,5), (5,7), (11,13) and (17,19).
MATHEMATICA
primePi2[1] = 0; primePi2[n_] := primePi2[n] = primePi2[n - 1] + Boole[PrimeQ[n] && PrimeQ[n + 2]]; Table[primePi2[n], {n, 100}] (* T. D. Noe, May 23 2013 *)
PROG
(PARI) A071538(n) = local(s=0, L=0); forprime(p=3, n+2, L==p-2 & s++; L=p); s
/* For n > primelimit, one may use: */ A071538(n) = { local(s=isprime(2+n=precprime(n))&n, L); while( n=precprime(L=n-2), L==n & s++); s }
/* The following gives a reasonably good estimate for small and for large values of n (cf. A007508): */
A071538est(n) = 1.320323631693739*intnum(t=2, n+1/n, 1/log(t)^2)-log(n) /* (The constant 1.320... is A114907.) */ \\ M. F. Hasler, Dec 10 2008
CROSSREFS
KEYWORD
nonn
AUTHOR
Reinhard Zumkeller, May 30 2002
EXTENSIONS
Definition edited by Daniel Forgues, Jul 29 2009
STATUS
approved
Number of n-digit twin prime pairs.
+10
5
2, 6, 27, 170, 1019, 6945, 50811, 381332, 2984194, 23988173, 196963369, 1646209172, 13964079652, 119945656793, 1041428920639, 9126986454994, 80644643655861, 717727049224277
OFFSET
1,1
REFERENCES
Jean-Marie De Koninck, Armel Mercier: 1001 Problems in Classical Number Theory, American Mathematical Society, 2007 - from Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), Mar 23 2010
Paulo Ribenboim: The New Book of Prime Number Records (3. Auflage), Springer-Verlag Berlin, 1996 - from Eva-Maria Zschorn (e-m.zschorn(AT)zaschendorf.km3.de), Mar 23 2010
FORMULA
a(n) = A007508(n) - A007508(n-1) [From Max Alekseyev, Jun 16 2011]
EXAMPLE
n=1: a(1)=2 pairs: (3,5), (5,7).
n=2: a(2)=6 pairs: (11,13), (17,19), (29,31), (41,43), (59,61), (71,73).
CROSSREFS
Cf. A007508.
KEYWORD
hard,more,nonn,base
AUTHOR
Lekraj Beedassy, May 06 2002
EXTENSIONS
a(6) corrected by Harvey P. Dale, Sep 02 2008
a(9) corrected and a(15)-a(18) from Donovan Johnson, Apr 25 2010
STATUS
approved
Number of pairs of consecutive prime (p,q) with q-p=6 and q < 10^n.
+10
4
0, 7, 44, 299, 1940, 13549, 99987, 768752, 6089791, 49392723, 408550278, 3435528229, 29289695650, 252672394234, 2201981901415, 19360330918473, 171550299264139, 1530609037414453
OFFSET
1,2
COMMENTS
Note that one has to be careful to distinguish between pairs of consecutive primes (p,q) with q-p = 6 (A031924), and pairs of primes (p,q) with q-p = 6 (A023201). Here we consider the former, whereas A080841 considers the latter. - N. J. A. Sloane, Mar 07 2021
LINKS
T. Oliveira e Silva, S. Herzog, and S. Pardi, Empirical verification of the even Goldbach conjecture and computation of prime gaps up to 4.10^18, Math. Comp., 83 (2014), 2033-2060.
EXAMPLE
a(2) = 7 because there are 7 prime gaps of 6 below 10^2.
MATHEMATICA
Accumulate@ Array[Count[Differences@ Prime@ Range[PrimePi[10^(# - 1) + 1], PrimePi[10^# - 1]], 6] &, 8] (* Michael De Vlieger, Apr 09 2021 *)
PROG
(UBASIC) 20 N=1:dim T(34); 30 A=nxtprm(N); 40 N=A; 50 B=nxtprm(N); 60 D=B-A; 70 for x=2 to 34 step 2; 80 if D=X and B<10^2+1 then T(X)=T(X)+1; 90 next X; 100 if B>10^2+1 then 140; 110 B=A; 120 N=N+1; 130 goto 30; 140 for x=2 to 34 step 2; 150 print T(X); , 160 next (This program simultaneously finds values from 2 to 34 -- if gap=2 add 1-- adjust lines 80 and 100 for desired 10^n)
CROSSREFS
KEYWORD
nonn,more
AUTHOR
Enoch Haga, Apr 15 2004.
EXTENSIONS
a(10)-a(13) from Washington Bomfim, Jun 22 2012
a(14)-a(18) from S. Herzog's website added by Giovanni Resta, Aug 14 2018
STATUS
approved
Table of frequencies of gaps of size 2d between consecutive primes below 10^n, n >= 1; d = 1,2,...,A213949(n).
+10
4
2, 8, 7, 7, 1, 35, 40, 44, 15, 16, 7, 7, 0, 1, 1, 205, 202, 299, 101, 119, 105, 54, 33, 40, 15, 16, 15, 3, 5, 11, 1, 2, 1, 1224, 1215, 1940, 773, 916, 964, 484, 339, 514, 238, 223, 206, 88, 98, 146, 32, 33, 54, 19, 28, 19, 5, 4, 3, 5
OFFSET
1,1
COMMENTS
Sum of elements in line n is Pi(10^n)-2. Column d is the sequence of the numbers of gaps of size 2d between consecutive primes up to 10^n. For example, column 1 is A007508, and column 2 is A093737. Column 3 corresponds to the jumping champion 6. Column 15 corresponds to the next champion 30. It is interesting that local maximums appear in the beginning of this column, 11 in line 4, and 146 in line 5.
LINKS
Washington Bomfim, Rows n = 1..13, flattened
A. Odlyzko, M. Rubinstein and M. Wolf, Jumping Champions
EXAMPLE
Table begins
2
8 7 7 1
35 40 44 15 16 7 7 0 1 1
205 202 299 101 119 105 54 33 40 15 16 15 3 5 11 1 2 1
1224 1215 1940 773 916 964 484 339 514 238 223 206 88 98 146 32 33 54 19 28...
MATHEMATICA
Table[t2 = Sort[Tally[Table[Prime[k + 1] - Prime[k], {k, 2, PrimePi[10^n] - 1}]]]; maxDiff = t2[[-1, 1]]/2; t3 = Table[0, {k, maxDiff}]; Do[t3[[t2[[i, 1]]/2]] = t2[[i, 2]], {i, Length[t2]}]; t3, {n, 5}] (* T. D. Noe, Jun 25 2012 *)
CROSSREFS
Cf. A038460, A000720, A007508, A093737, A213949 (row lengths).
KEYWORD
tabf,nonn,nice
AUTHOR
Washington Bomfim, Jun 24 2012
STATUS
approved
a(n) is the number of pairs of twin primes p and p+2 both less than or equal to 10^n such that p is congruent to 1 modulo 4.
+10
4
1, 4, 19, 105, 604, 4046, 29482, 220419, 1712731, 13706592, 112196635, 935286453
OFFSET
1,2
LINKS
Gareth A. Jones and Alexander K. Zvonkin, A number-theoretic problem concerning pseudo-real Riemann surfaces, arXiv:2401.00270 [math.NT], 2023. See Table 4 at page 13.
MATHEMATICA
a[n_] := Length[Select[Range[10^n-2], PrimeQ[#] && PrimeQ[#+2] && Mod[#, 4] == 1 &]]; Array[a, 10]
PROG
(PARI) lista(nmax) = {my(prev = 2, c = 0, pow = 10, n = 1, nm = nmax + 1); forprime(p = 3, , if(p > pow, print1(c, ", "); pow *= 10; n++; if(n == nm, break)); if(prev % 4 == 1 && p == prev + 2, c++); prev = p); } \\ Amiram Eldar, Jun 03 2024
KEYWORD
nonn,more
AUTHOR
Stefano Spezia, Jan 13 2024
EXTENSIONS
a(11)-a(12) from Amiram Eldar, Jun 03 2024
STATUS
approved
Number of twin primes < 2^n.
+10
3
0, 1, 2, 3, 5, 7, 10, 17, 24, 36, 62, 107, 177, 290, 505, 860, 1526, 2679, 4750, 8535, 15500, 27995, 50638, 92246, 168617, 309561, 571313, 1056281, 1961080, 3650557, 6810670, 12739574, 23878645, 44849427, 84384508, 159082253, 300424743, 568237005, 1076431099, 2042054332, 3879202049
OFFSET
1,3
COMMENTS
For n=2 only the lower member of the pair [3,5] is < 2^n. - Hugo Pfoertner, Feb 07 2024
CROSSREFS
Partial sums of A095017.
KEYWORD
nonn,hard
AUTHOR
Vasiliy Danilov (danilovv(AT)usa.net), Jun 15 1998
EXTENSIONS
a(38) from Alex Ratushnyak, Jun 07 2013
a(39)-a(41) from Hugo Pfoertner, Feb 07 2024
STATUS
approved
Number of cousin primes < 10^n.
+10
3
1, 8, 41, 203, 1216, 8144, 58622, 440258, 3424680, 27409999, 224373161, 1870585459, 15834656003, 135779962760, 1177207270204
OFFSET
1,2
COMMENTS
The corresponding numbers for twin primes and sexy primes are in A007508 and A080841, the greater of twin primes, cousin primes and sexy primes are in A006512, A046132 and A046117 respectively.
In this sequence, only the upper member of each prime cousin pair is counted. See A152052 for the variant where only the lower member is counted. - James Rayman, Jan 17 2021
LINKS
A. Granville and G. Martin, Prime number races, Amer. Math. Monthly vol 113, no 1 (2006) p 1.
Eric Weisstein's World of Mathematics, Cousin Primes.
PROG
(PARI) {c=0; p=5; for(n=1, 9, while(p<10^n, if(isprime(p-4), c++); p=nextprime(p+1)); print1(c, ", "))}
KEYWORD
nonn,hard,more
AUTHOR
Jason Earls, Mar 28 2003
EXTENSIONS
a(8) and a(9) from Klaus Brockhaus, Mar 30 2003
More terms from R. J. Mathar, Aug 05 2007
a(13)-a(15) from Martin Ehrenstein, Sep 03 2021
STATUS
approved

Search completed in 0.023 seconds