[go: up one dir, main page]

login
Search: a007068 -id:a007068
     Sort: relevance | references | number | modified | created      Format: long | short | data
Number of order-consecutive partitions of n.
(Formerly M2847)
+10
89
1, 3, 10, 34, 116, 396, 1352, 4616, 15760, 53808, 183712, 627232, 2141504, 7311552, 24963200, 85229696, 290992384, 993510144, 3392055808, 11581202944, 39540700160, 135000394752, 460920178688, 1573679925248
OFFSET
0,2
COMMENTS
After initial terms, first differs from A291292 at a(6) = 1352, A291292(8) = 1353.
Joe Keane (jgk(AT)jgk.org) observes that this sequence (beginning at 3) is "size of raises in pot-limit poker, one blind, maximum raising".
It appears that this sequence is the BinomialMean transform of A001653 (see A075271). - John W. Layman, Oct 03 2002
Number of (s(0), s(1), ..., s(2n+1)) such that 0 < s(i) < 8 and |s(i) - s(i-1)| = 1 for i = 1,2,...,2n+1, s(0) = 3, s(2n+1) = 4. - Herbert Kociemba, Jun 12 2004
Equals the INVERT transform of (1, 2, 5, 13, 34, 89, ...). - Gary W. Adamson, May 01 2009
a(n) is the number of compositions of n when there are 3 types of ones. - Milan Janjic, Aug 13 2010
a(n)/a(n-1) tends to (4 + sqrt(8))/2 = 3.414213.... Gary W. Adamson, Jul 30 2013
a(n) is the first subdiagonal of array A228405. - Richard R. Forberg, Sep 02 2013
Number of words of length n over {0,1,2,3,4} in which binary subwords appear in the form 10...0. - Milan Janjic, Jan 25 2017
From Gus Wiseman, Mar 05 2020: (Start)
Also the number of unimodal sequences of length n + 1 covering an initial interval of positive integers, where a sequence of integers is unimodal if it is the concatenation of a weakly increasing and a weakly decreasing sequence. For example, the a(0) = 1 through a(2) = 10 sequences are:
(1) (1,1) (1,1,1)
(1,2) (1,1,2)
(2,1) (1,2,1)
(1,2,2)
(1,2,3)
(1,3,2)
(2,1,1)
(2,2,1)
(2,3,1)
(3,2,1)
Missing are: (2,1,2), (2,1,3), (3,1,2).
Conjecture: Also the number of ordered set partitions of {1..n + 1} where no element of any block is greater than any element of a non-adjacent consecutive block. For example, the a(0) = 1 through a(2) = 10 ordered set partitions are:
{{1}} {{1,2}} {{1,2,3}}
{{1},{2}} {{1},{2,3}}
{{2},{1}} {{1,2},{3}}
{{1,3},{2}}
{{2},{1,3}}
{{2,3},{1}}
{{3},{1,2}}
{{1},{2},{3}}
{{1},{3},{2}}
{{2},{1},{3}}
a(n-1) is the number of hexagonal directed-column convex polyominoes having area n (see Baril et al. at page 4). - Stefano Spezia, Oct 14 2023
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
S. Barbero, U. Cerruti, and N. Murru, A Generalization of the Binomial Interpolated Operator and its Action on Linear Recurrent Sequences , J. Int. Seq. 13 (2010) # 10.9.7, proposition 16.
Jean-Luc Baril, José L. Ramírez, and Fabio A. Velandia, Bijections between Directed-Column Convex Polyominoes and Restricted Compositions, September 29, 2023.
Tyler Clark and Tom Richmond, The Number of Convex Topologies on a Finite Totally Ordered Set, 2013, Involve, Vol. 8 (2015), No. 1, 25-32.
Pamela Fleischmann, Jonas Höfer, Annika Huch, and Dirk Nowotka, alpha-beta-Factorization and the Binary Case of Simon's Congruence, arXiv:2306.14192 [math.CO], 2023.
Juan B. Gil and Jessica A. Tomasko, Fibonacci colored compositions and applications, arXiv:2108.06462 [math.CO], 2021.
F. K. Hwang and C. L. Mallows, Enumerating nested and consecutive partitions, Preprint. (Annotated scanned copy)
F. K. Hwang and C. L. Mallows, Enumerating nested and consecutive partitions, J. Combin. Theory Ser. A 70 (1995), no. 2, 323-333.
Mircea Merca, A Note on Cosine Power Sums J. Integer Sequences, Vol. 15 (2012), Article 12.5.3.
J.-C. Novelli and J.-Y. Thibon, Hopf Algebras of m-permutations,(m+1)-ary trees, and m-parking functions, arXiv preprint arXiv:1403.5962 [math.CO], 2014.
N. J. A. Sloane, Transforms
M. Z. Spivey and L. L. Steil, The k-Binomial Transforms and the Hankel Transform, J. Integ. Seqs. Vol. 9 (2006), #06.1.1.
FORMULA
a(n+1) = 4a(n) - 2a(n-1).
G.f.: (1-x)/(1-4x+2x^2).
Binomial transform of Pell numbers 1, 2, 5, 12, ... (A000129).
a(n) = A006012(n+1)/2 = A056236(n+1)/4. - Michael Somos, Mar 06 2003
a(n) = (A035344(n)+1)/2; a(n) = (2+sqrt(2))^n(1/2+sqrt(2)/4)+(2-sqrt(2))^n(1/2-sqrt(2)/4). - Paul Barry, Jul 16 2003
Second binomial transform of (1, 1, 2, 2, 4, 4, ...). a(n) = Sum_{k=1..floor(n/2)}, C(n, 2k)*2^(n-k-1). - Paul Barry, Nov 22 2003
a(n) = ( (2-sqrt(2))^(n+1) + (2+sqrt(2))^(n+1) )/4. - Herbert Kociemba, Jun 12 2004
a(n) = both left and right terms in M^n * [1 1 1], where M = the 3 X 3 matrix [1 1 1 / 1 2 1 / 1 1 1]. M^n * [1 1 1] = [a(n) A007070(n) a(n)]. E.g., a(3) = 34. M^3 * [1 1 1] = [34 48 34] (center term is A007070(3)). - Gary W. Adamson, Dec 18 2004
The i-th term of the sequence is the entry (2, 2) in the i-th power of the 2 X 2 matrix M = ((1, 1), (1, 3)). - Simone Severini, Oct 15 2005
E.g.f. : exp(2x)(cosh(sqrt(2x)+sinh(sqrt(2)x)/sqrt(2). - Paul Barry, Nov 20 2003
a(n) = A007068(2*n), n>0. - R. J. Mathar, Aug 17 2009
If p[i]=Fibonacci(2i-1) and if A is the Hessenberg matrix of order n defined by: A[i,j]=p[j-i+1], (i<=j), A[i,j]=-1, (i=j+1), and A[i,j]=0 otherwise. Then, for n>=1, a(n-1)= det A. - Milan Janjic, May 08 2010
a(n-1) = Sum_{k=-floor(n/4)..floor(n/4)} (-1)^k*binomial(2*n,n+4*k)/2. - Mircea Merca, Jan 28 2012
G.f.: G(0)*(1-x)/(2*x) + 1 - 1/x, where G(k) = 1 + 1/(1 - x*(2*k-1)/(x*(2*k+1) - (1-x)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 26 2013
a(n) = 3*a(n-1) + a(n-2) + a(n-3) + a(n-4) + ... + a(0). - Gary W. Adamson, Aug 12 2013
a(n) = a(-2-n) * 2^(n+1) for all n in Z. - Michael Somos, Jan 25 2017
EXAMPLE
G.f. = 1 + 3*x + 10*x^2 + 34*x^3 + 116*x^4 + 396*x^5 + 1352*x^6 + 4616*x^7 + ...
MATHEMATICA
a[n_]:=(MatrixPower[{{3, 1}, {1, 1}}, n].{{2}, {1}})[[2, 1]]; Table[a[n], {n, 0, 40}] (* Vladimir Joseph Stephan Orlovsky, Feb 20 2010 *)
a[ n_] := ((2 + Sqrt[2])^(n + 1) + (2 - Sqrt[2])^(n + 1)) / 4 // Simplify; (* Michael Somos, Jan 25 2017 *)
LinearRecurrence[{4, -2}, {1, 3}, 24] (* Jean-François Alcover, Jan 07 2019 *)
unimodQ[q_]:=Or[Length[q]<=1, If[q[[1]]<=q[[2]], unimodQ[Rest[q]], OrderedQ[Reverse[q]]]];
allnorm[n_]:=If[n<=0, {{}}, Function[s, Array[Count[s, y_/; y<=#]+1&, n]]/@Subsets[Range[n-1]+1]];
Table[Length[Select[Union@@Permutations/@allnorm[n], unimodQ]], {n, 6}] (* Gus Wiseman, Mar 06 2020 *)
PROG
(PARI) {a(n) = real((2 + quadgen(8))^(n+1)) / 2}; /* Michael Somos, Mar 06 2003 */
(Magma) [Floor((2+Sqrt(2))^n*(1/2+Sqrt(2)/4)+(2-Sqrt(2))^n*(1/2-Sqrt(2)/4)): n in [0..30] ] ; // Vincenzo Librandi, Aug 20 2011
KEYWORD
nonn,easy
AUTHOR
STATUS
approved
a(0)=0; a(1)=1; a(n) = a(n-1) + (3 + (-1)^n)*a(n-2)/2.
+10
4
0, 1, 1, 2, 4, 6, 14, 20, 48, 68, 164, 232, 560, 792, 1912, 2704, 6528, 9232, 22288, 31520, 76096, 107616, 259808, 367424, 887040, 1254464, 3028544, 4283008, 10340096, 14623104, 35303296, 49926400, 120532992, 170459392, 411525376
OFFSET
0,4
FORMULA
a(2*n) = A007070(n+1).
a(2*n+1) = A006012(n).
G.f.: x*(1+x-2*x^2)/(1-4*x^2+2*x^4).
a(n) = 4*a(n-2) - 2*a(n-4), a(0)=0, a(1)=1, a(2)=1, a(3)=2. - Harvey P. Dale, May 24 2013
EXAMPLE
a(4) = a(3) + 2*a(2) = 2 + 2 = 4.
MATHEMATICA
RecurrenceTable[{a[0]==0, a[1]==1, a[n]==a[n-1]+(3+(-1)^n) (a[n-2])/2}, a, {n, 40}] (* or *) LinearRecurrence[{0, 4, 0, -2}, {0, 1, 1, 2}, 40] (* Harvey P. Dale, May 24 2013 *)
PROG
(PARI) { for (n=0, 200, if (n>1, a=a1 + (3 + (-1)^n)*a2/2; a2=a1; a1=a, if (n==0, a=a2=0, a=a1=1)); write("b062112.txt", n, " ", a) ) } \\ Harry J. Smith, Aug 01 2009
(Magma) m:=30; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!(x*(1+x-2*x^2)/(1-4*x^2+2*x^4))); // G. C. Greubel, Oct 16 2018
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Olivier Gérard, Jun 05 2001
STATUS
approved
Expansion of x*(1+7*x-6*x^3)/(1-8*x^2+6*x^4).
+10
4
1, 7, 8, 50, 58, 358, 416, 2564, 2980, 18364, 21344, 131528, 152872, 942040, 1094912, 6747152, 7842064, 48324976, 56167040, 346116896, 402283936, 2478985312, 2881269248, 17755181120, 20636450368, 127167537088, 147803987456, 910809209984, 1058613197440
OFFSET
1,2
COMMENTS
It seems that this is also the first row of the spectral array W(sqrt(10)-2).
It also seems that, for all k>0, the first row of W(sqrt(k^2+1)-k+1) has a generating function of the form x*(1+(2*k+1)*x-2*k*x^3)/(1-(2*k+2)*x^2+2*k*x^4).
LINKS
A. Fraenkel and C. Kimberling, Generalized Wythoff arrays, shuffles and interspersions, Discrete Mathematics 126 (1994) 137-149.
MATHEMATICA
CoefficientList[Series[(1 + 7 x - 6 x^3)/(1 - 8 x^2 + 6 x^4), {x, 0, 40}], x] (* Vincenzo Librandi, Oct 25 2014 *)
LinearRecurrence[{0, 8, 0, -6}, {1, 7, 8, 50}, 30] (* Harvey P. Dale, Sep 22 2019 *)
PROG
(PARI) Vec((1+7*x-6*x^3)/(1-8*x^2+6*x^4) + O(x^100))
CROSSREFS
Cf. A007068 (k=1), A022165 (k=2), A249311 (k=4), A249312 (k=5), A249313 (k=6).
KEYWORD
nonn,easy
AUTHOR
Colin Barker, Oct 25 2014
STATUS
approved
Expansion of x*(1+9*x-8*x^3)/(1-10*x^2+8*x^4).
+10
4
1, 9, 10, 82, 92, 748, 840, 6824, 7664, 62256, 69920, 567968, 637888, 5181632, 5819520, 47272576, 53092096, 431272704, 484364800, 3934546432, 4418911232, 35895282688, 40314193920, 327476455424, 367790649344, 2987602292736, 3355392942080, 27256211283968
OFFSET
1,2
COMMENTS
It seems that this is also the first row of the spectral array W(sqrt(17)-3).
It also seems that, for all k>0, the first row of W(sqrt(k^2+1)-k+1) has a generating function of the form x*(1+(2*k+1)*x-2*k*x^3)/(1-(2*k+2)*x^2+2*k*x^4).
LINKS
A. Fraenkel and C. Kimberling, Generalized Wythoff arrays, shuffles and interspersions, Discrete Mathematics 126 (1994) 137-149.
PROG
(PARI) Vec(x*(1+9*x-8*x^3)/(1-10*x^2+8*x^4) + O(x^100))
CROSSREFS
Cf. A007068 (k=1), A022165 (k=2), A249310 (k=3), A249312 (k=5), A249313 (k=6).
KEYWORD
nonn,easy
AUTHOR
Colin Barker, Oct 25 2014
STATUS
approved
Expansion of x*(1+11*x-10*x^3)/(1-12*x^2+10*x^4).
+10
4
1, 11, 12, 122, 134, 1354, 1488, 15028, 16516, 166796, 183312, 1851272, 2034584, 20547304, 22581888, 228054928, 250636816, 2531186096, 2781822912, 28093683872, 30875506784, 311812345504, 342687852288, 3460811307328, 3803499159616, 38411612232896
OFFSET
1,2
COMMENTS
It seems that this is also the first row of the spectral array W(sqrt(26)-4).
It also seems that, for all k>0, the first row of W(sqrt(k^2+1)-k+1) has a generating function of the form x*(1+(2*k+1)*x-2*k*x^3)/(1-(2*k+2)*x^2+2*k*x^4).
LINKS
A. Fraenkel and C. Kimberling, Generalized Wythoff arrays, shuffles and interspersions, Discrete Mathematics 126 (1994) 137-149.
FORMULA
a(1)=1, a(2)=11, a(3)=12, a(4)=122, a(n)=12*a(n-2)-10*a(n-4). - Harvey P. Dale, Feb 02 2015
MATHEMATICA
LinearRecurrence[{0, 12, 0, -10}, {1, 11, 12, 122}, 40] (* Harvey P. Dale, Feb 02 2015 *)
PROG
(PARI) Vec(x*(1+11*x-10*x^3)/(1-12*x^2+10*x^4) + O(x^100))
CROSSREFS
Cf. A007068 (k=1), A022165 (k=2), A249310 (k=3), A249311 (k=4), A249313 (k=6).
KEYWORD
nonn,easy
AUTHOR
Colin Barker, Oct 25 2014
STATUS
approved
Expansion of x*(1+13*x-12*x^3)/(1-14*x^2+12*x^4).
+10
4
1, 13, 14, 170, 184, 2224, 2408, 29096, 31504, 380656, 412160, 4980032, 5392192, 65152576, 70544768, 852375680, 922920448, 11151428608, 12074349056, 145891492352, 157965841408, 1908663749632, 2066629591040, 24970594586624, 27037224177664, 326684359217152
OFFSET
1,2
COMMENTS
It seems that this is also the first row of the spectral array W(sqrt(37)-5).
It also seems that, for all k>0, the first row of W(sqrt(k^2+1)-k+1) has a generating function of the form x*(1+(2*k+1)*x-2*k*x^3)/(1-(2*k+2)*x^2+2*k*x^4).
LINKS
A. Fraenkel and C. Kimberling, Generalized Wythoff arrays, shuffles and interspersions, Discrete Mathematics 126 (1994) 137-149.
MATHEMATICA
CoefficientList[Series[x (1+13x-12x^3)/(1-14x^2+12x^4), {x, 0, 30}], x] (* or *) LinearRecurrence[{0, 14, 0, -12}, {1, 13, 14, 170}, 30] (* Harvey P. Dale, Oct 19 2018 *)
PROG
(PARI) Vec(x*(1+13*x-12*x^3)/(1-14*x^2+12*x^4) + O(x^100))
CROSSREFS
Cf. A007068 (k=1), A022165 (k=2), A249310 (k=3), A249311 (k=4), A249312 (k=5).
KEYWORD
nonn,easy
AUTHOR
Colin Barker, Oct 25 2014
STATUS
approved
a(0)=1; a(1)=2; a(n) = a(n-1) + a(n-2)*(3 - (-1)^n)/2.
+10
2
1, 2, 3, 7, 10, 24, 34, 82, 116, 280, 396, 956, 1352, 3264, 4616, 11144, 15760, 38048, 53808, 129904, 183712, 443520, 627232, 1514272, 2141504, 5170048, 7311552, 17651648, 24963200, 60266496, 85229696, 205762688, 290992384, 702517760
OFFSET
0,2
COMMENTS
A bistable recurrence.
FORMULA
a(n) = a(n-1) + a(n-2) * A000034(n). - Reinhard Zumkeller, Jan 21 2012
From Colin Barker, Apr 20 2012: (Start)
a(n) = 4*a(n-2) - 2*a(n-4).
G.f.: (1+2*x-x^2-x^3)/(1-4*x^2+2*x^4). (End)
MATHEMATICA
LinearRecurrence[{0, 4, 0, -2}, {1, 2, 3, 7}, 40] (* G. C. Greubel, Oct 16 2018 *)
PROG
(PARI) { for (n=0, 200, if (n>1, a=a1 + a2*(3 - (-1)^n)/2; a2=a1; a1=a, if (n==0, a=a2=1, a=a1=2)); write("b062113.txt", n, " ", a) ) } \\ Harry J. Smith, Aug 01 2009
(PARI) x='x+O('x^40); Vec((1+2*x-x^2-x^3)/(1-4*x^2+2*x^4)) \\ G. C. Greubel, Oct 16 2018
(Haskell)
a062113 n = a062113_list !! n
a062113_list = 1 : 2 : zipWith (+)
(tail a062113_list) (zipWith (*) a000034_list a062113_list)
-- Reinhard Zumkeller, Jan 21 2012
(Magma) I:=[1, 2, 3, 7]; [n le 4 select I[n] else 4*Self(n-2) - 2*Self(n-4): n in [1..40]]; // G. C. Greubel, Oct 16 2018
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Olivier Gérard, Jun 05 2001
STATUS
approved
First row of spectral array W(Pi/2).
+10
1
1, 2, 3, 5, 7, 13, 20, 35, 54, 96, 150, 264, 414, 726, 1140, 1997, 3136, 5495, 8631, 15121, 23752, 41612, 65363, 114513, 179876, 315132, 495008, 867223, 1362230, 2386544, 3748774, 6567622, 10316396
OFFSET
1,2
LINKS
A. Fraenkel and C. Kimberling, Generalized Wythoff arrays, shuffles and interspersions, Discrete Mathematics 126 (1994) 137-149.
PROG
(PARI)
\\ The first row of the generalized Wythoff array W(h),
\\ where h is an irrational number between 1 and 2.
row1(h, m) = {
my(
a=vector(m, n, floor(n*h)),
b=setminus(vector(m, n, n), a),
w=[a[1]^2, b[a[1]]],
j=3
);
while(1,
if(j%2==1,
if(w[j-1]<=#a, w=concat(w, a[w[j-1]]), return(w))
,
if(w[j-2]<=#b, w=concat(w, b[w[j-2]]), return(w))
);
j++
);
w
}
allocatemem(10^9)
row1(Pi/2, 10^7)
CROSSREFS
KEYWORD
nonn
AUTHOR
Colin Barker, Oct 25 2014
STATUS
approved
a(n) = 4*a(n-2) - 2*a(n-4).
+10
0
0, 1, 1, 3, 4, 10, 14, 34, 48, 116, 164, 396, 560, 1352, 1912, 4616, 6528, 15760, 22288, 53808, 76096, 183712, 259808, 627232, 887040, 2141504, 3028544, 7311552, 10340096, 24963200, 35303296, 85229696, 120532992, 290992384, 411525376, 993510144, 1405035520
OFFSET
1,4
FORMULA
a(n) = A007068(n-2), n>2.
G.f.: -x^2*(-1-x+x^2)/(1-4*x^2+2*x^4). [Oct 14 2009]
MATHEMATICA
LinearRecurrence[{0, 4, 0, -2}, {0, 1, 1, 3}, 30] (* Harvey P. Dale, May 21 2014 *)
CROSSREFS
KEYWORD
nonn,easy,less
AUTHOR
EXTENSIONS
Definition replaced by recurrence - The Assoc. Editors of the OEIS, Oct 14 2009
More terms from Harvey P. Dale, May 21 2014
STATUS
approved
First row of spectral array W(Pi-2).
+10
0
1, 8, 9, 64, 73, 516, 589, 4160, 4749, 33540, 38289, 270416, 308704, 2180232, 2488936, 17578149
OFFSET
1,2
LINKS
A. Fraenkel and C. Kimberling, Generalized Wythoff arrays, shuffles and interspersions, Discrete Mathematics 126 (1994) 137-149.
PROG
(PARI)
\\ Row i of the generalized Wythoff array W(h),
\\ where h is an irrational number between 1 and 2,
\\ and m is the number of terms in the vectors a and b.
row(h, i, m) = {
my(
a=vector(m, n, floor(n*h)),
b=vector(m, n, floor(n*h/(h-1))),
w=[a[a[i]], b[a[i]]],
j=3
);
while(1,
if(j%2==1,
if(w[j-1]<=#a, w=concat(w, a[w[j-1]]), return(w))
,
if(w[j-2]<=#b, w=concat(w, b[w[j-2]]), return(w))
);
j++
)
}
allocatemem(10^9)
row(Pi-2, 1, 10^7)
KEYWORD
nonn,more,hard
AUTHOR
Colin Barker, Nov 04 2014
STATUS
approved

Search completed in 0.020 seconds