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A bijection is given between the set of directed column-convex polyominoes on triangular and 
honeycomb lattices of area 𝑛 and some families of restricted compositions. This is an analogous 
result to one given by Deutsch and Prodinger for polyominoes over square lattices. As a byproduct, 
we deduce new close forms for the number of hexagonal and triangular directed column-convex 
polyominoes of area 𝑛 with 𝑘 columns.

1. Introduction

A polyomino is a connected set of 𝑛 unit cells on a lattice structure. In the literature, polyominoes are widely studied in the domain 
of combinatorics. Generally, the studies consist in the enumeration of some special classes of polyominoes with respect to the type 
of lattice and some given values of parameters (area, height, number of columns, perimeter, ...). We refer to the survey of Viennot 
[23], the book edited by Guttmann [16], and the papers [2,3,6–9,19–21]. In this paper, we will consider polyominoes in the square 
(resp. triangular, resp. honeycomb) lattice, where the unit cell is a square (resp. hexagon, resp. triangle). See Fig. 1 for an illustration 
of these lattices and the associated unit cells. Notice that the unit cell for the honeycomb lattice is an equilateral triangle that can be 
oriented in two ways (triangle pointing upwards and downwards).

For each lattice, we consider a set of directions (North/East for the square lattice, North/North-East/East for the triangular and 
honeycomb lattices). A polyomino 𝑃 is directed if there exists a cell 𝑆 , called the source of 𝑃 , such that any cell 𝐶 of 𝑃 can be 
obtained by repeatedly joining cells from 𝐶 using the predetermined set of directions. A polyomino 𝑃 is said column convex when 
any column of 𝑃 is a connected set, where a column of 𝑃 is defined as the set of cells of 𝑃 whose centers intersect a fixed line 𝐿
(vertical line for the square and triangular lattices, and oblique lines of slope 𝜋3 for the honeycomb lattice).

Definition 1.1. A dcc-polyomino consists of a set of unit cells satisfying the three key properties: the set of cells is connected, directed, 
and column convex.

We refer to Fig. 2 for three examples of dcc-polyominoes in the three kinds of lattices. The source cell is located at the bottom left 
corner and each dcc-polyomino is constructed by attaching unit cells in the allowed directions of the lattice, by taking into account 
the property of directed column convexity.
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Fig. 1. Square, triangular and honeycomb lattices, and the associated unit cells (square, hexagon, and triangle). For the honeycomb lattice, there are two kinds of 
cells: triangles pointing upwards and downwards.

𝑆 𝑆 𝑆

Fig. 2. From left to right, a square, a hexagonal, and a triangular dcc-polyominoes of areas 21, 18 and 37, respectively. All these polyominoes have 9 columns.

Let 𝑃 be a dcc-polyomino. The area of 𝑃 , denoted by 𝑎(𝑃 ), is the number of unit cells of 𝑃 . We denote the number of columns of 
𝑃 by 𝑐(𝑃 ). The height ℎ(𝑃 ) of 𝑃 is the length (number of cells) of a longest path from the source of 𝑃 to any of the cells in 𝑃 .

For each kind of lattice described above, Barcucci et al. [3] gave multivariate generating functions for the number of dcc-

polyominoes with respect to the area, the number of columns, and the height. The method used consists in giving a recursive 
description of the set of dcc-polyominoes which induces a functional equation for the multivariate generating function. They also 
deduce (for each lattice) the average height of dcc-polyominoes and its asymptotic behaviors when the area tends to infinity. In 
a second study [2], Barcucci, Pinzani, and Sprugnoli use a traditional recurrence relation approach in order to count the number 
of dcc-polyominoes in the square lattice with area 𝑛 and with 𝑘 columns. They prove that this number is given by the binomial 
coefficient(

𝑛+ 𝑘− 2
𝑛− 𝑘

)
,

and they deduce that the number of square dcc-polyominoes of area 𝑛 is the Fibonacci number 𝐹2𝑛+1, where 𝐹0 = 0, 𝐹1 = 1 and 
𝐹𝑛 = 𝐹𝑛−1 +𝐹𝑛−2 for 𝑛 ≥ 2. Moreover, Deutsch and Prodinger [7] exhibit a constructive bijection between these polyominoes of area 
𝑛 and ordered trees of height at most three with 𝑛 edges, that transports the number of columns into one plus the number of nodes 
at level 2. They also give a one-to-one correspondence with nondecreasing Dyck paths that transports the number of columns into 
the number of peaks, knowing that a nondecreasing Dyck path is a Dyck path having a nondecreasing sequence of the heights of its 
valleys (see [1] for an introduction of nondecreasing paths and [11–14] for some generalizations of these paths).

Motivation: To our knowledge, the literature does not mention any one-to-one correspondence between hexagonal (resp. trian-

gular) dcc-polyominoes of a given area with other classical combinatorial objects so that the number of columns is transported into a 
natural statistic. The objective of this note is to remedy this shortcoming by exhibiting a unified combinatorial class of objects which 
is in bijection with the other two kinds of dcc-polyominoes (hexagonal and triangular). As a byproduct, we will deduce new close 
forms for the number of these dcc-polyominoes of area 𝑛 with 𝑘 columns.

Outline of the paper: In Section 2, we exhibit a one-to-one correspondence between hexagonal dcc-polyominoes of area 𝑛 with 𝑘
columns and compositions of the integer 𝑛 −1 in which three different types of ones are allowed 1𝑁 , 1𝐷 , and 1𝐸 , and such that 𝑘 −1
parts are different from 1𝑁 . By counting these compositions and using this bijection, we deduce a new close form for the number 𝐻𝑛,𝑘

of hexagonal dcc-polyominoes of area 𝑛 with 𝑘 column. We also give a one-to-one correspondence between these polyominoes and 
the set of order-consecutive partitions of {1, 2, … , 𝑛} that transports the number of columns into the number of parts in the partition. 
Section 3 presents a similar study for triangular dcc-polyominoes in the honeycomb lattice. We exhibit a bijection between these 
polyominoes of area 𝑛 with 𝑘 columns and compositions of the integer 𝑛 − 1 in which only parts of the form 2𝑖, 𝑖 ≥ 0, are allowed, 
and such that 𝑘 − 1 parts are different from 1. As previous, this bijection allows us to deduce a new close form for the number 𝑡𝑛,𝑘
of triangular dcc-polyominoes of area 𝑛 with 𝑘 column. We also give a one-to-one correspondence between these polyominoes and 
the set of consecutive partitions of {1, 2, … , 𝑛} that transports the number of columns into the number of parts with at least two 
elements.

We end this section by fixing some definitions about compositions of an integer 𝑛. Also, we give some notations used in this 
note. A composition of a positive integer 𝑛 is a sequence of positive integers 𝜎 = (𝜎1, 𝜎2, … , 𝜎𝓁) such that 𝜎1 + 𝜎2 +⋯ + 𝜎𝓁 = 𝑛. The 
summands 𝜎𝑖 are called parts of the composition and 𝑛 is referred to the weight of 𝜎. For example, the compositions of 4 are

(4), (3,1), (1,3), (2,2), (2,1,1), (1,2,1), (1,1,2), (1,1,1,1).

It is well known [17,26] that the number of compositions of 𝑛 with 𝑘 parts is 
(𝑛−1
𝑘−1

)
, and the total number of compositions of 

𝑛 is 2𝑛−1. Throughout this note, we will use the following notations. The composition of the integer 0 will be denoted (), and if 
𝑐 = (𝑚1, 𝑚2, … , 𝑚𝑘) is a composition of 𝑛 ≥ 0 with 𝑘 parts, then 𝑐 corresponds to the sequence 𝑚1, 𝑚2, … , 𝑚𝑘, and for an integer 
𝑎 ≥ 1, the notation (𝑎, 𝑐) corresponds to the composition (𝑎, 𝑚1, 𝑚2, … , 𝑚𝑘) of the integer 𝑛 + 𝑎. In particular, if 𝑐 = () then we have 
2

(𝑎, 𝑐) = (𝑎).
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Fig. 3. Recursive decomposition of a hexagonal dcc-polyomino 𝑃 .

2. Hexagonal dcc-polyominoes

Barcucci et al. [3] proved that the number of hexagonal dcc-polyominoes having area 𝑛, denoted by 𝐻𝑛 , is equal to

𝐻𝑛 =
1
4
(𝜃𝑛1 + 𝜃𝑛2) =

𝑛∑
𝑘=0

(
𝑛

2𝑘

)
2𝑛−𝑘−1 (𝑛 ≥ 1),

where 𝜃1 = 2 +
√
2 and 𝜃2 = 2 −

√
2. Moreover, the authors give the generating function of the sequence

𝐻(𝑥) ∶=
∑
𝑛≥1

𝐻𝑛𝑥
𝑛 = 𝑥(1 − 𝑥)

1 − 4𝑥+ 2𝑥2
.

The first few values for 𝑛 ≥ 1 of 𝐻𝑛 are

1, 3, 10, 34, 116, 396, 1352, 4616, 15760,…

Notice that 𝐻𝑛 corresponds with the sequence A007052 in [25]. Among the objects counted by this sequence are the compositions 
of an integer in which there are three different types of ones, denoted by 1𝑁, 1𝐷 , and 1𝐸 , respectively. Let 𝑎𝑛 be the number of these 
compositions of weight 𝑛. For example, 𝑎2 = 10 and the corresponding compositions are

(1𝑁,1𝑁 ), (1𝑁,1𝐷), (1𝑁,1𝐸 ), (1𝐷,1𝑁 ), (1𝐷,1𝐷), (1𝐷,1𝐸 ),

(1𝐸,1𝑁 ), (1𝐸,1𝐷), (1𝐸,1𝐸 ), (2).

Theorem 2.1. For all 𝑛 ≥ 0, we have the equality 𝑎𝑛 =𝐻𝑛+1.

Proof. Let  denote the family (combinatorial class) of compositions in which three different types of ones are allowed, then we can 
write the symbolic equation:

 = SEQ({1𝑁,1𝐷,1𝐸,2,3,4,…}),

where SEQ denotes the sequence combinatorial class (the previous equation simply rephrases that every element of  is a sequence 
whose terms belong to {1𝑁, 1𝐷, 1𝐸, 2, 3, 4, … }). For a general background about the symbolic method see the book [10]. In terms of 
generating functions, the last equation translates into

𝐴(𝑥) ∶=
∑
𝑛≥0

𝑎𝑛𝑥
𝑛 = 1

1 −
(
3𝑥+

∑
𝓁≥2 𝑥

𝓁
) = 1

1 − 3𝑥−2𝑥2
1−𝑥

= 1 − 𝑥

1 − 4𝑥+ 2𝑥2
,

and we obtain that 𝐻(𝑥) = 𝑥𝐴(𝑥), which means that 𝑎𝑛 =𝐻𝑛+1. □

As already mentioned in [3], any hexagonal dcc-polyomino 𝑃 of area 𝑛 ≥ 1 can be uniquely decomposed in one of the following 
forms (see Fig. 3):

(𝑖) 𝑃 consists of one hexagonal cell;

(𝑖𝑖) 𝑃 is obtained by attaching a dcc-polyomino 𝑄 of area 𝑛 − 1 to the north side of a hexagonal cell which becomes the source of 
𝑃 ;

(𝑖𝑖𝑖) 𝑃 is obtained by attaching a dcc-polyomino 𝑄 of area 𝑛 −1 to the north-east side of a hexagonal cell which becomes the source 
of 𝑃 ;

(𝑖𝑣) 𝑃 is obtained by attaching a column 𝐶 of 𝑘 ≥ 1 unit cells so that the most southern cell of 𝐶 is attached (by its east side) to a 
dcc-polyomino 𝑄 of area 𝑛 − 𝑘.

According to this decomposition, we define recursively a map 𝜙 from the set of hexagonal dcc-polyominoes of area 𝑛 + 1 and the 
set 3

𝑛
of compositions of 𝑛 having parts in {1𝑁, 1𝐷, 1𝐸, 2, 3, 4, … } (the part 1 can take three different colors).

- If 𝑃 belongs to the case (𝑖), then we set 𝜙(𝑃 ) = () (empty composition);

- If 𝑃 belongs to the case (𝑖𝑖), then we set 𝜙(𝑃 ) = (1𝑁, 𝜙(𝑄));
- If 𝑃 belongs to the case (𝑖𝑖𝑖), then we set 𝜙(𝑃 ) = (1𝐷, 𝜙(𝑄));
3

- If 𝑃 belongs to the case (𝑖𝑣), then we distinguish two cases:

http://oeis.org/A007052
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⟶ (1𝐸 ,1𝑁 ,1𝑁 ,3,1𝑁 ,1𝐷,1𝐷,2,1𝑁 ,1𝐸 ,1𝐸 ,1𝑁 ,1𝐷,1𝑁 )

Fig. 4. A hexagonal dcc-polyomino of area 18 with 9 columns and its image by 𝜙, which is a composition of 17 with parts in {1𝑁 , 1𝐷, 1𝐸 , 2, 3, 4, … }. The number of 
parts different from 1𝑁 equals 8, which also is the number of columns minus one.

- If 𝑘 = 1 (𝑘 is the number of cells in the first column of 𝑃 ), then we set 𝜙(𝑃 ) = (1𝐸, 𝜙(𝑄));
- Otherwise we have 𝑘 ≥ 2, and we set 𝜙(𝑃 ) = (𝑘, 𝜙(𝑄)).

See Fig. 4 for an illustration of the map 𝜙 on a hexagonal dcc-polyomino.

Theorem 2.2. For all 𝑛 ≥ 0, 𝜙 is a bijection between the set of dcc-polyominoes of area 𝑛 + 1 and the set of compositions of 𝑛 where the 
parts belong to {1𝑁, 1𝐷, 1𝐸, 2, 3, 4, … }. Moreover, 𝜙 transports the number of columns minus one into the number of parts different from 
1𝑁 in the composition.

Proof. We can easily observe that the image by 𝜙 of a hexagonal dcc-polymomino of area 𝑛 + 1 is a composition in 3
𝑛
. Moreover, if 

this polyomino 𝑃 has 𝑘 + 1 columns, then 𝜙(𝑃 ) has exactly 𝑘 parts lying in {1𝐷, 1𝐸, 2, 3, 4, … }. Conversely, any composition in 3
𝑛

with 𝑘 parts different from 1𝑁 can be uniquely decomposed into one of the following forms:

(𝑖) the empty composition () whenever 𝑛 = 0;

(𝑖𝑖) (1𝑁, 𝑐1, … , 𝑐𝓁), 𝓁 ≥ 0, where (𝑐1, … , 𝑐𝓁) ∈ 3
𝑛−1 with 𝑘 parts different from 1𝑁 ;

(𝑖𝑖𝑖) (1𝐷, 𝑐1, … , 𝑐𝓁), 𝓁 ≥ 0, where (𝑐1, … , 𝑐𝓁) ∈ 3
𝑛−1 with 𝑘 − 1 parts different from 1𝑁 ;

(𝑖𝑣𝑎) (1𝐸, 𝑐1, … , 𝑐𝓁), 𝓁 ≥ 0, where (𝑐1, … , 𝑐𝓁) ∈ 3
𝑛−1 with 𝑘 − 1 parts different from 1𝑁 ;

(𝑖𝑣𝑏) (𝑎, 𝑐1, … , 𝑐𝓁), 𝓁 ≥ 0, where 𝑎 ≥ 2 and (𝑐1, … , 𝑐𝓁) ∈ 3
𝑛−𝑎 with 𝑘 − 1 parts different from 1𝑁 .

Therefore, the set of hexagonal dcc-polyominoes of area 𝑛 +1 and the set 3
𝑛

have the same recursive description, which ensures that 
𝜙 is a bijection that transports the number of columns minus one into the number of parts different from 1𝑁 . □

Let (𝐿𝑛)𝑛≥0 be the sequence defined by the first difference 𝐿𝑛 =𝐻𝑛+1 −𝐻𝑛. The first 10 values of this sequence are

1, 2, 7, 24, 82, 280, 956, 3264, 11144, 38048. (A003480)

It is interesting to notice that 𝐿𝑛 enumerates the number of 𝐿-convex polyominoes with 𝑛 cells in the square lattice, which are in 
one-to-one correspondence with 2-compositions of 𝑛, i.e. matrices with two rows whose entries are non-negative integers, summing 
up to 𝑛, containing no rows all made of 0 s (see [4,5]).

Let 𝐻𝑛,𝑘 be the number of hexagonal dcc-polyominoes of area 𝑛 with exactly 𝑘 columns. Notice that an immediate consequence 
of the recursive decomposition of a dcc-polyomino is the recursive formula 𝐻𝑛,1 = 1 for 𝑛 ≥ 1, and for 𝑛 ≥ 2, 𝑘 ≥ 2,

𝐻𝑛,𝑘 =𝐻𝑛−1,𝑘 +𝐻𝑛−1,𝑘−1 +
𝑛−1∑
𝓁=1

𝐻𝑛−𝓁,𝑘−1.

As a byproduct of the bijection 𝜙 given in Theorem 2.2 we deduce a close form for 𝐻𝑛,𝑘.

Theorem 2.3. If 𝑛 ≥ 𝑘 ≥ 2, then

𝐻𝑛,𝑘 =
𝑘−1∑
𝑖=0

(
𝑘− 1
𝑖

)(
𝑛+ 𝑖− 1
𝑛− 𝑘

)
.

Proof. Due to the bijection 𝜙 defined above, 𝐻𝑛,𝑘 corresponds to the number of compositions of 𝑛 − 1 with parts in 
{1𝑁, 1𝐷, 1𝐸, 2, 3, 4, … }, and where exactly 𝑘 − 1 parts are different from 1𝑁 . Such a composition 𝑐 can be uniquely obtained 
from a composition of 𝑟, 𝑘 − 1 ≤ 𝑟 ≤ 𝑛 − 1, with 𝑘 − 1 parts and where all parts lie in {1𝐷, 1𝐸, 2, 3, 4, … }, by adding (𝑛 − 1 − 𝑟) parts 
1𝑁 in the right places. Since there are 

(𝑛−𝑟−1+𝑘−1
𝑘−1

)
=
(𝑛−𝑟+𝑘−2

𝑘−1

)
ways for adding these parts into 𝑘 places (this is the number of ways 

to choose 𝑘 − 1 parts among 𝑛 − 1 − 𝑟 + 𝑘 − 1 parts), we obtain

𝐻𝑛,𝑘 =
𝑛−1∑

𝑟=𝑘−1

(
𝑛− 2 − 𝑟+ 𝑘

𝑘− 1

)
𝑎𝑟,𝑘−1,
4

where 𝑎𝑟,𝑘−1 is the number of compositions of 𝑟 with (𝑘 − 1) parts lying into {1𝐷, 1𝐸, 2, 3, 4, … }.
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From the definition of the sequence 𝑎𝑟,𝑠 and for a given 𝑠, we obtain the following expression for its generating function:

∑
𝑟≥0

𝑎𝑟,𝑠𝑥
𝑟 = (2𝑥+ 𝑥2 + 𝑥3 +⋯)𝑠 = 𝑥𝑠

𝑠∑
𝑖=0

(
𝑠

𝑖

)
1

(1 − 𝑥)𝑖
.

From the equality 1∕(1 − 𝑥)𝑚+1 =
∑∞

𝓁=0
(𝑚+𝓁

𝓁

)
𝑥𝓁 , we have

∑
𝑟≥0

𝑎𝑟,𝑠𝑥
𝑟 = 𝑥𝑠 +

𝑠∑
𝑖=1

∞∑
𝓁=0

(
𝑠

𝑖

)(
𝑖+ 𝓁 − 1

𝓁

)
𝑥𝓁+𝑠.

By setting 𝓁 = 0, the coefficient of 𝑥𝑠 in this expression is 𝑎𝑠,𝑠 = 2𝑠. For 𝑟 > 𝑠, setting 𝓁 = 𝑟 − 𝑠 yields

𝑎𝑟,𝑠 =
𝑠∑

𝑖=1

(
𝑠

𝑖

)(
𝑖+ 𝑟− 𝑠− 1

𝑟− 𝑠

)
=

𝑠∑
𝑖=1

(
𝑠

𝑖

)(
𝑟− 𝑠+ 𝑖− 1

𝑟− 𝑠

)
.

Therefore, by considering the previous value of 𝑎𝑟,𝑠 for 𝑠 = 𝑘 − 1, we obtain

𝐻𝑛,𝑘 = 𝑎𝑘−1,𝑘−1

(
𝑛− 1
𝑘− 1

)
+

𝑛−1∑
𝑗=𝑘

(
𝑛− 2 − 𝑗 + 𝑘

𝑘− 1

)
𝑎𝑗,𝑘−1

= 2𝑘−1
(
𝑛− 1
𝑘− 1

)
+

𝑘−1∑
𝑖=1

(
𝑘− 1
𝑖

) 𝑛−𝑘∑
𝑗=1

(
(𝑖− 1) + 𝑗

𝑗

)(
𝑛− 𝑗 − 1
𝑛− 𝑗 − 𝑘

)

= 2𝑘−1
(
𝑛− 1
𝑘− 1

)
+

𝑘−1∑
𝑖=1

(
𝑘− 1
𝑖

) 𝑛−𝑘∑
𝑗=1

(
(𝑖− 1) + 𝑗

𝑗

)(
(𝑘− 1) + (𝑛− 𝑘− 𝑗)

𝑛− 𝑗 − 𝑘

)
.

The last sum can be simplified by means of the identity (3.2) in [15] by setting 𝑥 = 𝑖 − 1, 𝑦 = 𝑘 − 1, and 𝑚 = 𝑛 − 𝑘. Therefore,

𝐻𝑛,𝑘 = 2𝑘−1
(
𝑛− 1
𝑘− 1

)
+

𝑘−1∑
𝑖=1

(
𝑘− 1
𝑖

)[(
𝑛+ 𝑖− 1
𝑛− 𝑘

)
−
(
𝑛− 1
𝑛− 𝑘

)]

=
𝑘−1∑
𝑖=0

(
𝑘− 1
𝑖

)(
𝑛+ 𝑖− 1
𝑛− 𝑘

)
. □

Using the same decomposition as previously for defining the bijection with compositions having parts into {1𝑁, 1𝐷, 1𝐸, 2, 3, 4, … }, 
we can easily exhibit another bijection between dcc-polyominoes of area 𝑛 with 𝑘 columns and order-consecutive partitions of 
{1, 2, … , 𝑛} with 𝑘 parts, knowing that an ordered partition of {1, 2, … , 𝑛} with 𝑝 parts is a 𝑝-uplet (𝑆1, 𝑆2, … , 𝑆𝑝) of subsets such 

that 𝑆𝑖 ∩ 𝑆𝑗 = ∅ if 𝑖 ≠ 𝑗, and 
𝑝⋃

𝑖=1
𝑆𝑖 = {1, 2, … , 𝑛}. An order-consecutive partition of {1, 2, … , 𝑛} is an ordered partition satisfying the 

property: for 𝑗 = 1, … , 𝑝, 
𝑗⋃

𝑖=1
𝑆𝑖 is an interval.

So, we define recursively a map 𝜓 from the set of hexagonal polyominoes of area 𝑛 + 1 and the set 𝑛 of order-consecutive 
partitions of {1, 2, … , 𝑛}.

- If 𝑃 belongs to the case (𝑖), then we set 𝜓(𝑃 ) = {1};

- If 𝑃 belongs to the case (𝑖𝑖), then 𝜓(𝑃 ) is obtained from 𝜓(𝑄) by inserting 𝑛 in the last part; for instance, if 𝜓(𝑄) = {3, 4}{2}{1}, 
then 𝜓(𝑃 ) = {3, 4}{2}{1, 5};

- If 𝑃 belongs to the case (𝑖𝑖𝑖), then 𝜓(𝑃 ) is obtained from 𝜓(𝑄) by adding the part {𝑛} on the right; for instance, if 𝜓(𝑄) =
{3, 4}{2}{1}, then 𝜓(𝑃 ) = {3, 4}{2}{1}{5};

- If 𝑃 belongs to the case (𝑖𝑣), then 𝜓(𝑃 ) is obtained from 𝜓(𝑄) by increasing by 𝑘 ≥ 1 all values in 𝜓(𝑄), and by adding the part 
{1, 2, … , 𝑘} on the right; for instance, if 𝜓(𝑄) = {3, 4}{2}{1} and 𝑘 = 4, then 𝜓(𝑃 ) = {7, 8}{6}{5}{1, 2, 3, 4}.

With a same argument as the proof of Theorem 2.2, we can easily prove that 𝜓 is a bijection that transports the number of 
columns into the number of parts. The image of the polyomino represented in Fig. 4 is

{9}{8,10,11}{5,6,7,12}{13}{14}{3,4,15}{2}{1,16}{17,18}.
5

As a consequence of this bijection and using Theorem 2.3 and Theorem 6 in [18], we deduce another close form for 𝐻𝑛,𝑘.
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Corollary 2.4. The number of hexagonal dcc-polyominoes of area 𝑛 with 𝑘 columns is

𝐻𝑛,𝑘 =
𝑘−1∑
𝑖=0

(−1)𝑘−1−𝑖
(
𝑘− 1
𝑖

)(
2𝑘− 𝑖− 2

𝑖

)
.

From the above results we have the bivariate generating function∑
𝑛,𝑘≥1

𝐻𝑛,𝑘𝑥
𝑛𝑦𝑘 = (1 − 𝑥)𝑥𝑦

1 − 2𝑥(1 + 𝑦) + 𝑥2(1 + 𝑦)
.

Let  be the matrix defined by  = [𝐻𝑛,𝑘]𝑛,𝑘≥1. The first few rows of the matrix  are

 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0 0
1 2 0 0 0 0 0 0
1 5 4 0 0 0 0 0
1 9 16 8 0 0 0 0
1 14 41 44 16 0 0 0
1 20 85 146 112 32 0 0
1 27 155 377 456 272 64 0
1 35 259 833 1408 1312 640 128
⋮ ⋮ ⋮ ⋮

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

The matrix  corresponds to the array A056242 and it corresponds with the Riordan array (cf. [24])  =
(

1
1−𝑥 ,

𝑥(2−𝑥)
(1−𝑥)2

)
. From the 

theory of Riordan arrays (cf. [22]) we obtain the following curious relation. If 𝑛, 𝑘 ≥ 1, then

𝐻𝑛+1,𝑘+1 = 2𝐻𝑛,𝑘 +
3
2
𝐻𝑛,𝑘+1 +

∑
𝓁≥2

1
1 − 2𝓁

(
2𝓁
𝓁

)(−1
4

)𝓁
𝐻𝑛,𝑘+𝓁

= 2𝐻𝑛,𝑘 +
3
2
𝐻𝑛,𝑘+1 +

∑
𝓁≥2

𝐶𝓁−1
(−1)𝓁−1

22𝓁−1
𝐻𝑛,𝑘+𝓁 ,

where 𝐶𝓁 is the 𝓁-th Catalan number.

3. Triangular dcc-polyominoes

Let  be the set of triangular dcc-polyominoes. Barcucci et al. [3] proved that the generating function for the number of triangular 
dcc-polyominoes having area 𝑛, denoted by 𝑇𝑛, is given by

𝑇 (𝑥) ∶=
∑
𝑛≥1

𝑇𝑛𝑥
𝑛 = 𝑥(1 − 𝑥2)

1 − 𝑥− 2𝑥2 + 𝑥3
.

The first few values for 𝑛 ≥ 1 of 𝑇𝑛 are

1, 1, 2, 3, 6, 10, 19, 33, 61, 108,…

Notice that 𝑇𝑛 corresponds with the sequence A028495 in [25]. From the expression of 𝑇 (𝑥) follows that 𝑇𝑛 satisfies the recurrence 
relation

𝑇𝑛 = 𝑇𝑛−1 + 2𝑇𝑛−2 − 𝑇𝑛−3 (𝑛 ≥ 4),

with initial conditions 𝑇1 = 1, 𝑇2 = 1, and 𝑇3 = 2. This relation can be applied repeatedly in the following manner:

𝑇𝑛 − 𝑇𝑛−1 = 2𝑇𝑛−2 − 𝑇𝑛−3

= 𝑇𝑛−2 + 2𝑇𝑛−4 − 𝑇𝑛−5

= 𝑇𝑛−2 + 𝑇𝑛−4 + (𝑇𝑛−4 − 𝑇𝑛−5)

⋮

=

{
𝑇𝑛−2 + 𝑇𝑛−4 +⋯+ 𝑇2 + 𝑇0, if 𝑛 is even;

𝑇𝑛−2 + 𝑇𝑛−4 +⋯+ 𝑇3 + 𝑇1, if 𝑛 is odd;

This can be rewritten as

𝑇𝑛 = 𝑇𝑛−1 +
⌊𝑛∕2⌋∑

𝑇𝑛−2𝑘.
6

𝑘=1

http://oeis.org/A056242
http://oeis.org/A028495
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(𝑖) (𝑖𝑖) (𝑖𝑖𝑖) 

Q

(𝑖𝑣) 
Q

Fig. 5. Recursive decomposition of a triangular dcc-polyomino 𝑃 .

⟶ (1,1,1,4,1,2,1,1,4,1,1,1,2,8,1,2,2,2)

Fig. 6. A triangular dcc-polyomino of area 37 with 9 columns and its image by 𝜒 , which is a composition of 36 with parts in {1, 2, 4, 6, 8,… } and so that 8 parts are 
different from 1.

The sequence (𝑇𝑛)𝑛≥0 enumerates a variety of combinatorial objects, such as all paths of length of 𝑛 on the path graph 𝑃6 and the 
compositions of 𝑛 whose parts belong to the set {1, 2, 4, 6, 8, … }. Let us establish the relation between triangular dcc-polyominoes 
and this family of compositions. Let 𝑏𝑛 be the number of compositions of 𝑛 into parts from {1, 2, 4, 6, 8, … }.

Proposition 3.1. For all 𝑛 ≥ 0, we have the equality 𝑏𝑛 = 𝑇𝑛+1.

Proof. We will prove this statement using the symbolic method. Let  be the family of all compositions whose parts belong to the 
set {1, 2, 4, 6, 8, … }. Thus  = SEQ({1, 2, 4, 6, 8, … }). In terms of generating functions, the last equation translates into

𝐵(𝑥) ∶=
∑
𝑛≥1

𝑏𝑛𝑥
𝑛 = 1

1 −
(
𝑥+

∑
𝓁≥1 𝑥

2𝓁
) = 1

1 − 𝑥− 𝑥2

1−𝑥2

= 1 − 𝑥2

1 − 𝑥− 2𝑥2 + 𝑥3
.

Therefore, we obtain 𝑇 (𝑥) = 𝑥𝐵(𝑥), which means that 𝑏𝑛 = 𝑇𝑛+1. □

As already mentioned in [3], any triangular dcc-polyomino 𝑃 of area 𝑛 ≥ 1 can be uniquely decomposed in one of the following 
forms (see Fig. 5):

(𝑖) 𝑃 consists of one triangular cell (a triangle pointing upwards);

(𝑖𝑖) 𝑃 consists of two triangular cells (two triangles pointing upwards and downwards);

(𝑖𝑖𝑖) 𝑃 is obtained by attaching a triangular dcc-polyomino 𝑄 of area 𝑛 −2 to the north side of two triangular cells where the leftmost 
cell becomes the source of 𝑃 ;

(𝑖𝑣) 𝑃 is obtained by attaching a column 𝐶 of 𝑘 ≥ 2 triangular dcc-polyominoes so that the most southern down-cell of 𝐶 is attached 
(by its east side) to a triangular dcc-polyomino 𝑄 of area 𝑛 − 𝑘.

According to this decomposition, we define recursively a map 𝜒 from the set of triangular dcc-polyominoes of area 𝑛 + 1 and the 
set 𝑛 of compositions of 𝑛 having parts in {1, 2, 4, 6, 8, …}.

- If 𝑃 belongs to the case (𝑖), then we set 𝜒(𝑃 ) = () (empty composition);

- If 𝑃 belongs to the case (𝑖𝑖), then we set 𝜒(𝑃 ) = (1);
- If 𝑃 belongs to the case (𝑖𝑖𝑖), then we set 𝜒(𝑃 ) = (1, 1, 𝜒(𝑄));
- If 𝑃 belongs to the case (𝑖𝑣), then we distinguish two cases:

- If the number 𝑘 ≥ 2 of cells in the first column is odd, then we set 𝜒(𝑃 ) = (1, 𝑘 − 1, 𝜒(𝑄));
- Otherwise (𝑘 ≥ 2 is even), we set 𝜒(𝑃 ) = (𝑘, 𝜒(𝑄));

See Fig. 6 for an illustration of the map 𝜒 on a triangular dcc-polyomino.

Theorem 3.2. For all 𝑛 ≥ 0, 𝜒 is a bijection between the set of triangular dcc-polyominoes of area 𝑛 + 1 and the set of compositions of 𝑛
where the parts belong to {1, 2, 4, 6, 8, …}. Moreover, 𝜒 transports the number of columns minus one into the number of parts different from 
1 in the composition.

Proof. We can easily observe that the image by 𝜒 of a triangular dcc-polymomino of area 𝑛 + 1 is a composition in 𝑛. Moreover, 
if this polyomino 𝑃 has 𝑘 + 1 columns, then 𝜙(𝑃 ) has exactly 𝑘 parts different to one. Conversely, any composition in 𝑛 with 𝑘
parts different from 1 can be uniquely decomposed into one of the following forms:

(𝑖) the empty composition () whenever 𝑛 = 0;

(𝑖𝑖) the composition (1);
(𝑖𝑖) (1, 1, 𝑐1, … , 𝑐𝓁), 𝓁 ≥ 0, where (𝑐1, … , 𝑐𝓁) ∈ 𝑛−2 with 𝑘 parts different from 1;
7

(𝑖𝑣𝑎) (1, 𝑎, 𝑐1, … , 𝑐𝓁), 𝓁 ≥ 0, 𝑎 ≥ 2, where (𝑐1, … , 𝑐𝓁) ∈ 𝑛−𝑎−1 with 𝑘 − 1 parts different from 1;
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(𝑖𝑣𝑏) (𝑎, 𝑐1, … , 𝑐𝓁), 𝓁 ≥ 0, 𝑎 ≥ 2, where (𝑐1, … , 𝑐𝓁) ∈ 𝑛−𝑎 with 𝑘 − 1 parts different from 1;

Therefore, the set of triangular dcc-polyominoes of area 𝑛 + 1 and the set 𝑛 have the same recursive description, which ensures 
that 𝜒 is a bijection that transports the number of columns minus one into the number of parts different from 1. □

Let 𝑡𝑛,𝑘 be the number of triangular dcc-polyominoes of area 𝑛 with exactly 𝑘 columns. Notice that an immediate consequence of 
the recursive decomposition of a dcc-polyomino is the recursive formula 𝑡𝑛,1 = 1 for 𝑛 ≥ 1, and for 𝑛 ≥ 3, 𝑘 ≥ 2,

𝑡𝑛,𝑘 = 𝑡𝑛−2,𝑘 +
𝑛−1∑
𝓁=2

𝑡𝑛−𝓁,𝑘−1.

As a byproduct of the bijection given in Theorem 3.2 we give a closed form for 𝑡𝑛,𝑘.

Theorem 3.3. If 𝑛 ≥ 𝑘 ≥ 1, then

𝑡𝑛,𝑘 =
⌊(𝑛−1)∕2⌋∑
𝑟=⌊𝑘∕2⌋

(
𝑛− 2 − 2𝑟+ 𝑘

𝑘− 1

)(
𝑟− 1

𝑟− 𝑘+ 1

)
.

Proof. Due to the bijection 𝜒 defined previously, 𝑡𝑛,𝑘 corresponds to the number of compositions of 𝑛 − 1 with parts in 
{1, 2, 4, 6, 8, …}, and where exactly 𝑘 − 1 parts are different from 1. Such a composition 𝑐 can be uniquely obtained from a composi-

tion of 𝑟, 𝑘 − 1 ≤ 𝑟 ≤ 𝑛 − 1, with 𝑘 − 1 parts and where all parts lie in {2, 4, 6, 8, …}, by adding (𝑛 − 1 − 𝑟) parts 1 in the right places. 
Since there are 

(𝑛−𝑟−1+𝑘−1
𝑘−1

)
=
(𝑛−𝑟+𝑘−2

𝑘−1

)
ways for adding these parts into 𝑘 places (this is the number of ways of choosing 𝑘 − 1 parts 

among 𝑛 − 1 − 𝑟 + 𝑘 − 1 parts), we obtain

𝑡𝑛,𝑘 =
𝑛−1∑

𝑟=𝑘−1

(
𝑛− 2 − 𝑟+ 𝑘

𝑘− 1

)
𝑏𝑟,𝑘−1,

where 𝑏𝑟,𝑘−1 is the number of compositions of 𝑟 having all its (𝑘 − 1) parts lying into {2, 4, 6, 8, …}.

From the definition of the sequence 𝑏𝑟,𝑠 and for a given 𝑠, we obtain the following expression for its generating function:

∑
𝑟≥0

𝑏𝑟,𝑠𝑥
𝑟 = (𝑥2 + 𝑥4 + 𝑥6 +⋯)𝑠 = 𝑥2𝑠

(
1

1 − 𝑥2

)𝑠

.

From the equality 1∕(1 − 𝑥)𝑚+1 =
∑∞

𝓁=0
(𝑚+𝓁

𝓁

)
𝑥𝓁 , we have

∑
𝑟≥0

𝑏𝑟,𝑠𝑥
𝑟 = 𝑥2𝑠

∞∑
𝓁=0

(
𝑠+ 𝓁 − 1

𝓁

)
𝑥2𝓁 .

We obtain 𝑏𝑟,𝑠 = 0 when 𝑟 is odd and 𝑏𝑟,𝑠 =
(𝑟∕2−1
𝑟∕2−𝑠

)
whenever 𝑟 is even. Therefore, by considering the previous value of 𝑏𝑟,𝑠 for 

𝑠 = 𝑘 − 1, we obtain

𝑡𝑛,𝑘 =
𝑛−1∑

𝑟=𝑘−1

(
𝑛− 2 − 𝑟+ 𝑘

𝑘− 1

)
𝑏𝑟,𝑘−1 =

⌊(𝑛−1)∕2⌋∑
𝑟=⌊𝑘∕2⌋

(
𝑛− 2 − 2𝑟+ 𝑘

𝑘− 1

)(
𝑟− 1

𝑟− 𝑘+ 1

)
. □

From this bijection, we deduce easily one-to-one correspondence between triangular dcc-polyominoes of area 𝑛 with 𝑘 columns 
and consecutive partitions of 𝑛 with 𝑘 parts (i.e. partitions where every subset consists of consecutive elements). Indeed, the consec-

utive partition 𝑝 associated to the polyomino 𝑃 is defined from the composition 𝜒(𝑃 ) = (𝑐1, 𝑐2, … , 𝑐𝑠) as follows:

𝑝 = {1,… , 𝑐1}{𝑐1 + 1,… , 𝑐1 + 𝑐2}{𝑐1 + 𝑐2 + 1,… , 𝑐1 + 𝑐2 + 𝑐3}⋯

⋯{𝑐1 + 𝑐2 +…+ 𝑐𝑠−1 + 1,… , 𝑐1 + 𝑐2 +…+ 𝑐𝑠}.

The image of the polyomino represented in Fig. 4 is

{1}{2}{3}{4,5,6,7}{8}{9,10}{11}{12}{13,14,15,16}{17}{18}

{19}{20,21}{22,23,24,25,26,27,28,29}{30}{31,32}{33,34}{35,36}.

Let  = [𝑏(𝑛, 𝑘)] be the Riordan array defined by  =
(

1
1−𝑥 ,

𝑥

(1−𝑥)(1−𝑥2)

)
, and let  be the matrix defined by  = [𝑡𝑛,𝑘]𝑛,𝑘≥1
8

(A060098). The first few rows of the matrix  are

http://oeis.org/A060098
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 =

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

1 0 0 0 0 0 0
1 0 0 0 0 0 0
1 1 0 0 0 0 0
1 2 0 0 0 0 0
1 4 1 0 0 0 0
1 6 3 0 0 0 0
1 9 8 1 0 0 0
1 12 16 4 0 0 0
1 16 30 13 1 0 0
⋮ ⋮ ⋮ ⋮

⎞⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎟⎠

.

Notice that the anti-diagonals of the matrix  are the rows of the matrix  , that is, 𝑡𝑛,𝑘 = 𝑏(𝑛 − 𝑘, 𝑘).
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