[go: up one dir, main page]

login
Search: a004731 -id:a004731
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(n) = (2n+1)!/n!^2.
(Formerly M4198 N1752)
+10
143
1, 6, 30, 140, 630, 2772, 12012, 51480, 218790, 923780, 3879876, 16224936, 67603900, 280816200, 1163381400, 4808643120, 19835652870, 81676217700, 335780006100, 1378465288200, 5651707681620, 23145088600920, 94684453367400, 386971244197200, 1580132580471900
OFFSET
0,2
COMMENTS
Expected number of matches remaining in Banach's modified matchbox problem (counted when last match is drawn from one of the two boxes), multiplied by 4^(n-1). - Michael Steyer, Apr 13 2001
Hankel transform is (-1)^n*A014480(n). - Paul Barry, Apr 26 2009
Convolved with A000108: (1, 1, 1, 5, 14, 42, ...) = A000531: (1, 7, 38, 187, 874, ...). - Gary W. Adamson, May 14 2009
Convolution of A000302 and A000984. - Philippe Deléham, May 18 2009
1/a(n) is the integral of (x(1-x))^n on interval [0,1]. Apparently John Wallis computed these integrals for n=0,1,2,3,.... A004731, shifted left by one, gives numerators/denominators of related integrals (1-x^2)^n on interval [0,1]. - Marc van Leeuwen, Apr 14 2010
Extend the triangular peaks of Dyck paths of semilength n down to the baseline forming (possibly) larger and overlapping triangles. a(n) = sum of areas of these triangles. Also a(n) = triangular(n) * Catalan(n). - David Scambler, Nov 25 2010
Let H be the n X n Hilbert matrix H(i,j) = 1/(i+j-1) for 1 <= i,j <= n. Let B be the inverse matrix of H. The sum of the elements in row n of B equals a(n-1). - T. D. Noe, May 01 2011
Apparently the number of peaks in all symmetric Dyck paths with semilength 2n+1. - David Scambler, Apr 29 2013
Denominator of central elements of Leibniz's Harmonic Triangle A003506.
Central terms of triangle A116666. - Reinhard Zumkeller, Nov 02 2013
Number of distinct strings of length 2n+1 using n letters A, n letters B, and 1 letter C. - Hans Havermann, May 06 2014
Number of edges in the Hasse diagram of the poset of partitions in the n X n box ordered by containment (from Havermann's comment above, C represents the square added in the edge). - William J. Keith, Aug 18 2015
Let V(n, r) denote the volume of an n-dimensional sphere with radius r then V(n, 1/2^n) = V(n-1, 1/2^n) / a((n-1)/2) for all odd n. - Peter Luschny, Oct 12 2015
a(n) is the result of processing the n+1 row of Pascal's triangle A007318 with the method of A067056. Example: Let n=3. Given the 4th row of Pascal's triangle 1,4,6,4,1, we get 1*(4+6+4+1) + (1+4)*(6+4+1) + (1+4+6)*(4+1) + (1+4+6+4)*1 = 15+55+55+15 = 140 = a(3). - J. M. Bergot, May 26 2017
a(n) is the number of (n+1) X 2 Young tableaux with a two horizontal walls between the first and second column. If there is a wall between two cells, the entries may be decreasing; see [Banderier, Wallner 2021] and A000984 for one horizontal wall. - Michael Wallner, Jan 31 2022
a(n) is the number of facets of the symmetric edge polytope of the cycle graph on 2n+1 vertices. - Mariel Supina, May 12 2022
REFERENCES
A. T. Benjamin and J. J. Quinn, Proofs that really count: the art of combinatorial proof, M.A.A. 2003, id. 159.
L. Comtet, Advanced Combinatorics, Reidel, 1974, p. 83, Problem 25; p. 168, #30.
W. Feller, An Introduction to Probability Theory and Its Applications, Vol. I.
C. Jordan, Calculus of Finite Differences. Röttig and Romwalter, Budapest, 1939; Chelsea, NY, 1965, p. 449.
M. Klamkin, ed., Problems in Applied Mathematics: Selections from SIAM Review, SIAM, 1990; see pp. 127-129.
C. Lanczos, Applied Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1956, p. 514.
A. P. Prudnikov, Yu. A. Brychkov and O.I. Marichev, "Integrals and Series", Volume 1: "Elementary Functions", Chapter 4: "Finite Sums", New York, Gordon and Breach Science Publishers, 1986-1992.
J. Ser, Les Calculs Formels des Séries de Factorielles. Gauthier-Villars, Paris, 1933, p. 92.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
J. Wallis, Operum Mathematicorum, pars altera, Oxford, 1656, pp 31,34 [Marc van Leeuwen, Apr 14 2010]
LINKS
G. C. Greubel, Table of n, a(n) for n = 0..1000 [Terms 0 to 200 computed by T. D. Noe; terms 201 to 1000 by G. C. Greubel, Jan 14 2017]
Cyril Banderier and Michael Wallner, Young Tableaux with Periodic Walls: Counting with the Density Method, Séminaire Lotharingien de Combinatoire, 85B (2021), Art. 47, 12 pp.
Alexander Barg, Stolarsky's invariance principle for finite metric spaces, arXiv:2005.12995 [math.CO], 2020.
W. G. Bickley and J. C. P. Miller, Numerical differentiation near the limits of a difference table, Phil. Mag., 33 (1942), 1-12 (plus tables) [Annotated scanned copy]
Sara C. Billey, Matjaž Konvalinka, and Joshua P. Swanson, Asymptotic normality of the major index on standard tableaux, arXiv:1905.00975 [math.CO], 2019.See p. 15, Remark 4.2
R. Chapman, Moments of Dyck paths, Discrete Math., 204 (1999), 113-117.
Ömür Deveci and Anthony G. Shannon, Some aspects of Neyman triangles and Delannoy arrays, Mathematica Montisnigri (2021) Vol. L, 36-43.
F. Disanto, A. Frosini, R. Pinzani and S. Rinaldi, A closed formula for the number of convex permutominoes, arXiv:math/0702550 [math.CO], 2007.
Luca Ferrari and Emanuele Munarini, Enumeration of edges in some lattices of paths, arXiv preprint arXiv:1203.6792 [math.CO], 2012 and J. Int. Seq. 17 (2014) #14.1.5.
Nikita Gogin and Mika Hirvensalo, On the Moments of Squared Binomial Coefficients, (2020).
P.-Y. Huang, S.-C. Liu, and Y.-N. Yeh, Congruences of Finite Summations of the Coefficients in certain Generating Functions, The Electronic Journal of Combinatorics, 21 (2014), #P2.45.
Milan Janjić, Pascal Matrices and Restricted Words, J. Int. Seq., Vol. 21 (2018), Article 18.5.2.
C. Jordan, Calculus of Finite Differences, Budapest, 1939. [Annotated scans of pages 448-450 only]
Bahar Kuloğlu, Engin Özkan, and Marin Marin, Fibonacci and Lucas Polynomials in n-gon, An. Şt. Univ. Ovidius Constanţa (Romania 2023) Vol. 31, No 2, 127-140.
C. Lanczos, Applied Analysis (Annotated scans of selected pages)
A. Petojevic and N. Dapic, The vAm(a,b,c;z) function, Preprint 2013.
H. E. Salzer, Coefficients for numerical differentiation with central differences, J. Math. Phys., 22 (1943), 115-135.
H. E. Salzer, Coefficients for numerical differentiation with central differences, J. Math. Phys., 22 (1943), 115-135. [Annotated scanned copy]
J. Ser, Les Calculs Formels des Séries de Factorielles, Gauthier-Villars, Paris, 1933 [Local copy].
J. Ser, Les Calculs Formels des Séries de Factorielles (Annotated scans of some selected pages)
L. W. Shapiro, W.-J. Woan and S. Getu, Runs, slides and moments, SIAM J. Alg. Discrete Methods, 4 (1983), 459-466.
Andrei K. Svinin, On some class of sums, arXiv:1610.05387 [math.CO], 2016. See p. 5.
T. R. Van Oppolzer, Lehrbuch zur Bahnbestimmung der Kometen und Planeten, Vol. 2, Engelmann, Leipzig, 1880, p. 21.
Eric Weisstein's World of Mathematics, Central Beta Function
Eric Weisstein's World of Mathematics, Pi Formulas
FORMULA
G.f.: (1-4x)^(-3/2) = 1F0(3/2;;4x).
a(n-1) = binomial(2*n, n)*n/2 = binomial(2*n-1, n)*n.
a(n-1) = 4^(n-1)*Sum_{i=0..n-1} binomial(n-1+i, i)*(n-i)/2^(n-1+i).
a(n) ~ 2*Pi^(-1/2)*n^(1/2)*2^(2*n)*{1 + 3/8*n^-1 + ...}. - Joe Keane (jgk(AT)jgk.org), Nov 21 2001
(2*n+2)!/(2*n!*(n+1)!) = (n+n+1)!/(n!*n!) = 1/beta(n+1, n+1) in A061928.
Sum_{i=0..n} i * binomial(n, i)^2 = n*binomial(2*n, n)/2. - Yong Kong (ykong(AT)curagen.com), Dec 26 2000
a(n) ~ 2*Pi^(-1/2)*n^(1/2)*2^(2*n). - Joe Keane (jgk(AT)jgk.org), Jun 07 2002
a(n) = 1/Integral_{x=0..1} x^n (1-x)^n dx. - Fred W. Helenius (fredh(AT)ix.netcom.com), Jun 10 2003
E.g.f.: exp(2*x)*((1+4*x)*BesselI(0, 2*x) + 4*x*BesselI(1, 2*x)). - Vladeta Jovovic, Sep 22 2003
a(n) = Sum_{i+j+k=n} binomial(2i, i)*binomial(2j, j)*binomial(2k, k). - Benoit Cloitre, Nov 09 2003
a(n) = (2*n+1)*A000984(n) = A005408(n)*A000984(n). - Zerinvary Lajos, Dec 12 2010
a(n-1) = Sum_{k=0..n} A039599(n,k)*A000217(k), for n >= 1. - Philippe Deléham, Jun 10 2007
Sum of (n+1)-th row terms of triangle A132818. - Gary W. Adamson, Sep 02 2007
Sum_{n>=0} 1/a(n) = 2*Pi/3^(3/2). - Jaume Oliver Lafont, Mar 07 2009
a(n) = Sum_{k=0..n} binomial(2k,k)*4^(n-k). - Paul Barry, Apr 26 2009
a(n) = A000217(n) * A000108(n). - David Scambler, Nov 25 2010
a(n) = f(n, n-3) where f is given in A034261.
a(n) = A005430(n+1)/2 = A002011(n)/4.
a(n) = binomial(2n+2, 2) * binomial(2n, n) / binomial(n+1, 1), a(n) = binomial(n+1, 1) * binomial(2n+2, n+1) / binomial(2, 1) = binomial(2n+2, n+1) * (n+1)/2. - Rui Duarte, Oct 08 2011
G.f.: (G(0) - 1)/(4*x) where G(k) = 1 + 2*x*((2*k + 3)*G(k+1) - 1)/(k + 1). - Sergei N. Gladkovskii, Dec 03 2011 [Edited by Michael Somos, Dec 06 2013]
G.f.: 1 - 6*x/(G(0)+6*x) where G(k) = 1 + (4*x+1)*k - 6*x - (k+1)*(4*k-2)/G(k+1); (continued fraction, Euler's 1st kind, 1-step). - Sergei N. Gladkovskii, Aug 13 2012
G.f.: Q(0), where Q(k) = 1 + 4*(2*k + 1)*x*(2*k + 2 + Q(k+1))/(k+1). - Sergei N. Gladkovskii, May 10 2013 [Edited by Michael Somos, Dec 06 2013]
G.f.: G(0)/2, where G(k) = 1 + 1/(1 - 4*x*(2*k+3)/(4*x*(2*k+3) + 2*(k+1)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 06 2013
a(n) = 2^(4n)/Sum_{k=0..n} (-1)^k*C(2n+1,n-k)/(2k+1). - Mircea Merca, Nov 12 2013
a(n) = (2*n)!*[x^(2*n)] HeunC(0,0,-2,-1/4,7/4,4*x^2) where [x^n] f(x) is the coefficient of x^n in f(x) and HeunC is the Heun confluent function. - Peter Luschny, Nov 22 2013
0 = a(n) * (16*a(n+1) - 2*a(n+2)) + a(n+1) * (a(n+2) - 6*a(n+1)) for all n in Z. - Michael Somos, Dec 06 2013
a(n) = 4^n*binomial(n+1/2, 1/2). - Peter Luschny, Apr 24 2014
a(n) = 4^n*hypergeom([-2*n,-2*n-1,1/2],[-2*n-2,1],2)*(n+1)*(2*n+1). - Peter Luschny, Sep 22 2014
a(n) = 4^n*hypergeom([-n,-1/2],[1],1). - Peter Luschny, May 19 2015
a(n) = 2*4^n*Gamma(3/2+n)/(sqrt(Pi)*Gamma(1+n)). - Peter Luschny, Dec 14 2015
Sum_{n >= 0} 2^(n+1)/a(n) = Pi, related to Newton/Euler's Pi convergence transformation series. - Tony Foster III, Jul 28 2016. See the Weisstein Pi link, eq. (23). - Wolfdieter Lang, Aug 26 2016
Boas-Buck recurrence: a(n) = (6/n)*Sum_{k=0..n-1} 4^(n-k-1)*a(k), n >= 1, and a(0) = 1. Proof from a(n) = A046521(n+1,1). See comment in A046521. - Wolfdieter Lang, Aug 10 2017
a(n) = (1/3)*Sum_{i = 0..n+1} C(n+1,i)*C(n+1,2*n+1-i)*C(3*n+2-i,n+1) = (1/3)*Sum_{i = 0..2*n+1} (-1)^(i+1)*C(2*n+1,i)*C(n+i+1,i)^2. - Peter Bala, Feb 07 2018
a(n) = (2*n+1)*binomial(2*n, n). - Kolosov Petro, Apr 16 2018
a(n) = (-4)^n*binomial(-3/2, n). - Peter Luschny, Oct 23 2018
a(n) = 1 / Sum_{s=0..n} (-1)^s * binomial(n, s) / (n+s+1). - Kolosov Petro, Jan 22 2019
a(n) = Sum_{k = 0..n} (2*k + 1)*binomial(2*n + 1, n - k). - Peter Bala, Feb 25 2019
4^n/a(n) = Integral_{x=0..1} (1 - x^2)^n. - Michael Somos, Jun 13 2019
D-finite with recurrence: 0 = a(n)*(6 + 4*n) - a(n+1)*(n + 1) for all n in Z. - Michael Somos, Jun 13 2019
Sum_{n>=0} (-1)^n/a(n) = 4*arcsinh(1/2)/sqrt(5). - Amiram Eldar, Sep 10 2020
From Jianing Song, Apr 10 2022: (Start)
G.f. for {1/a(n)}: 4*arcsin(sqrt(x)/2) / sqrt(x*(4-x)).
E.g.f. for {1/a(n)}: exp(x/4)*sqrt(Pi/x)*erf(sqrt(x)/2). (End)
G.f. for {1/a(n)}: 4*arctan(sqrt(x/(4-x))) / sqrt(x*(4-x)). - Michael Somos, Jun 17 2023
a(n) = Sum_{k = 0..n} (-1)^(n+k) * (n + 2*k + 1)*binomial(n+k, k). This is the particular case m = 1 of the identity Sum_{k = 0..m*n} (-1)^k * (n + 2*k + 1) * binomial(n+k, k) = (-1)^(m*n) * (m*n + 1) * binomial((m+1)*n+1, n). Cf. A090816 and A306290. - Peter Bala, Nov 02 2024
EXAMPLE
G.f. = 1 + 6*x + 30*x^2 + 140*x^3 + 630*x^4 + 2772*x^5 + 12012*x^6 + 51480*x^7 + ...
MAPLE
A002457:=n->(n+1) * binomial(2*(n+1), (n+1)) / 2; seq(A002457(n), n=0..50);
seq((2*n)!*coeff(series(HeunC(0, 0, -2, -1/4, 7/4, 4*x^2), x, 2*n+1), x, 2*n), n=0..22); # Peter Luschny, Nov 22 2013
MATHEMATICA
a[n_]:=(2*n+1)!/n!^2; Array[f, 23, 0] (* Vladimir Joseph Stephan Orlovsky, Dec 13 2008 *)
PROG
(PARI) {a(n) = if( n<0, 0, (2*n + 1)! / n!^2)}; /* Michael Somos, Dec 09 2002 */
(PARI) a(n) = (2*n+1)*binomial(2*n, n); \\ Altug Alkan, Apr 16 2018
(Haskell)
a002457 n = a116666 (2 * n + 1) (n + 1)
-- Reinhard Zumkeller, Nov 02 2013
(Sage)
A002457 = lambda n: binomial(n+1/2, 1/2)<<2*n
[A002457(n) for n in range(23)] # Peter Luschny, Sep 22 2014
(Magma) [Factorial(2*n+1)/Factorial(n)^2: n in [0..25]]; // Vincenzo Librandi, Oct 12 2015
CROSSREFS
Cf. A000531 (Banach's original match problem).
Cf. A033876, A000984, A001803, A132818, A046521 (second column).
A diagonal of A331430.
The rightmost diagonal of the triangle A331431.
KEYWORD
nonn,easy,nice,changed
STATUS
approved
Numerators in expansion of (1 - x)^(-3/2).
(Formerly M2986 N1207)
+10
50
1, 3, 15, 35, 315, 693, 3003, 6435, 109395, 230945, 969969, 2028117, 16900975, 35102025, 145422675, 300540195, 9917826435, 20419054425, 83945001525, 172308161025, 1412926920405, 2893136075115, 11835556670925
OFFSET
0,2
COMMENTS
a(n) is the denominator of the integral from 0 to Pi of (sin(x))^(2*n+1). - James R. Buddenhagen, Aug 17 2008
a(n) is the denominator of (2n)!!/(2*n + 1)!! = 2^(2*n)*n!*n!/(2*n + 1)! (see Andersson). - N. J. A. Sloane, Jun 27 2011
a(n) = (2*n + 1)*A001790(n). A046161(n)/a(n) = 1, 2/3, 8/15, 16/35, 128/315, 256/693, ... is binomial transform of Madhava-Gregory-Leibniz series for Pi/4 (i.e., 1 - 1/3 + 1/5 - 1/7 + ... ). See A173384 and A173396. - Paul Curtz, Feb 21 2010
a(n) is the denominator of Integral_{x=-oo..oo} sech(x)^(2*n+2) dx. The corresponding numerator is A101926(n). - Mohammed Yaseen, Jul 25 2023
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 798.
G. Prévost, Tables de Fonctions Sphériques. Gauthier-Villars, Paris, 1933, pp. 156-157.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Milton Abramowitz and Irene A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
Mats Erik Andersson, Das Flaviussche Sieb, Acta Arith., 85 (1998), 301-307.
Alexander Barg, Stolarsky's invariance principle for finite metric spaces, arXiv:2005.12995 [math.CO], 2020.
Yue-Wu Li and Feng Qi, A New Closed-Form Formula of the Gauss Hypergeometric Function at Specific Arguments, Axioms (2024) Vol. 13, Art. No. 317. See p. 11 of 24.
FORMULA
a(n) = (2*n + 1)! /(n!^2*2^A000120(n)) = (n + 1)*binomial(2*n+2,n+1)/2^(A000120(n)+1). - Ralf Stephan, Mar 10 2004
From Johannes W. Meijer, Jun 08 2009: (Start)
a(n) is the numerator of (2*n + 1)*binomial(2*n,n)/(4^n).
(1 - x)^(-3/2) = Sum_{n>=0} ((2*n + 1)*binomial(2*n,n)/(4^n)*x^n)
(End)
Truncations of rational expressions like those given by the numerator or denominator operators are artifacts in integer formulas and have many disadvantages. A pure integer formula follows. Let n$ denote the swinging factorial and sigma(n) = number of '1's in the base-2 representation of floor(n/2). Then a(n) = (2*n+1)$ / sigma(2*n+1) = A056040(2*n+1) / A060632(2*n+2). Simply said: This sequence gives the odd part of the swinging factorial at odd indices. - Peter Luschny, Aug 01 2009
MAPLE
swing := proc(n) option remember; if n = 0 then 1 elif irem(n, 2) = 1 then swing(n-1)*n else 4*swing(n-1)/n fi end:
sigma := n -> 2^(add(i, i= convert(iquo(n, 2), base, 2))):
a := n -> swing(2*n+1)/sigma(2*n+1); # Peter Luschny, Aug 01 2009
A001803 := proc(n) (2*n+1)*binomial(2*n, n)/4^n ; numer(%) ; end proc: # R. J. Mathar, Jul 06 2011
MATHEMATICA
Numerator/@CoefficientList[Series[(1-x)^(-3/2), {x, 0, 25}], x] (* Harvey P. Dale, Feb 19 2011 *)
Table[Denominator[Beta[1, n + 1, 1/2]], {n, 0, 22}] (* Gerry Martens, Nov 13 2016 *)
PROG
(PARI) a(n) = numerator((2*n+1)*binomial(2*n, n)/(4^n)); \\ Altug Alkan, Sep 06 2018
(Julia)
A001803(n) = sum(<<(A001790(k), A005187(n) - A005187(k)) for k in 0:n) # Peter Luschny, Oct 03 2019
CROSSREFS
The denominator is given in A046161.
Largest odd divisors of A001800, A002011, A002457, A005430, A033876, A086228.
Bisection of A004731, A004735, A086116.
Second column of triangle A100258.
From Johannes W. Meijer, Jun 08 2009: (Start)
Cf. A002596 (numerators in expansion of (1-x)^(1/2)).
Cf. A161198 (triangle related to the series expansions of (1-x)^((-1-2*n)/2)).
(End)
A163590 is the odd part of the swinging factorial, A001790 at even indices. - Peter Luschny, Aug 01 2009
KEYWORD
nonn,frac
STATUS
approved
Numerator of n!!/(n+1)!! (cf. A006882).
+10
7
1, 1, 2, 3, 8, 5, 16, 35, 128, 63, 256, 231, 1024, 429, 2048, 6435, 32768, 12155, 65536, 46189, 262144, 88179, 524288, 676039, 4194304, 1300075, 8388608, 5014575, 33554432, 9694845, 67108864, 300540195, 2147483648, 583401555, 4294967296, 2268783825
OFFSET
0,3
LINKS
Joseph E. Cooper III, A recurrence for an expression involving double factorials, arXiv:1510.00399 [math.CO], 2015.
Svante Janson, On the traveling fly problem, Graph Theory Notes of New York Vol. XXXI, 17, 1996.
FORMULA
Let y(m) = y(m-2) + 1/y(m-1) for m >= 2, with y(0)=y(1)=1. Then the denominator of y(n+1) equals the numerator of n!!/(n+1)!! for n >= 0, where the double factorials are given by A006882. [Reinhard Zumkeller, Dec 08 2011, as corrected in Cooper (2015)]
MATHEMATICA
Numerator[#[[1]]/#[[2]]&/@Partition[Range[0, 40]!!, 2, 1]] (* Harvey P. Dale, Jan 22 2013 *)
Numerator[CoefficientList[Series[(1 - Sqrt[1 - c^2] + ArcSin[c])/(c Sqrt[1 - c^2]), {c, 0, 39}], c]] (* Eugene d'Eon, Nov 01 2018 *)
PROG
(Haskell)
import Data.Ratio ((%), denominator)
a004730 n = a004730_list !! n
a004730_list = map denominator ggs where
ggs = 1 : 2 : zipWith (+) ggs (map (1 /) $ tail ggs) :: [Rational]
-- Reinhard Zumkeller, Dec 08 2011
(Magma) DoubleFactorial:=func< n | &*[n..2 by -2] >; [ Numerator(DoubleFactorial(n) / DoubleFactorial(n+1)): n in [0..35]]; // Vincenzo Librandi, Dec 03 2018
(Python)
from sympy import gcd, factorial2
def A004730(n):
a, b = factorial2(n), factorial2(n+1)
return a//gcd(a, b) # Chai Wah Wu, Apr 03 2021
CROSSREFS
Cf. A004731 (denominator), A006882 (double factorials).
KEYWORD
nonn,frac
STATUS
approved
Decimal expansion of sqrt(2/Pi).
+10
6
7, 9, 7, 8, 8, 4, 5, 6, 0, 8, 0, 2, 8, 6, 5, 3, 5, 5, 8, 7, 9, 8, 9, 2, 1, 1, 9, 8, 6, 8, 7, 6, 3, 7, 3, 6, 9, 5, 1, 7, 1, 7, 2, 6, 2, 3, 2, 9, 8, 6, 9, 3, 1, 5, 3, 3, 1, 8, 5, 1, 6, 5, 9, 3, 4, 1, 3, 1, 5, 8, 5, 1, 7, 9, 8, 6, 0, 3, 6, 7, 7, 0, 0, 2, 5, 0, 4, 6, 6, 7, 8, 1, 4, 6, 1, 3, 8, 7, 2, 8, 6, 0, 6, 0
OFFSET
0,1
COMMENTS
This is the limit of (n+1)!!/n!!/n^(1/2) at n_even->inf.
Expected value of |x - mu|/sigma for normal distribution with mean mu and standard deviation sigma (i.e., the normalized mean absolute deviation). - Stanislav Sykora, Jun 30 2017
LINKS
Harmann König, Carsten Schütt, and Nicole Tomczak-Jaegermann, Projection constants of symmetric spaces and variants of Khintchine's inequality, J. reine angew. Math. 511 (1999), pp. 1-42.
FORMULA
Equals A087197*A002193. - R. J. Mathar Feb 05 2009
Equals integral_{-infinity..infinity} (1-erf(x)^2)/2 dx. - Jean-François Alcover, Feb 25 2015
EXAMPLE
0.79788456080286535587989211986876373695171726232986931533...
MATHEMATICA
RealDigits[Sqrt[2/Pi], 10, 120][[1]] (* Harvey P. Dale, Feb 05 2012 *)
PROG
(Magma) pi:=Sqrt(2/Pi(RealField(110))); Reverse(Intseq(Floor(10^110*pi))); // Vincenzo Librandi, Jul 01 2017
(PARI) sqrt(2/Pi) \\ G. C. Greubel, Sep 23 2017
CROSSREFS
Cf. A004730, A004731, A019727, A060294 (Buffon's constant 2/Pi), A092678 (probable error).
KEYWORD
nonn,cons
AUTHOR
Zak Seidov, Oct 25 2002
EXTENSIONS
More terms and better description from Benoit Cloitre and Michael Somos, Oct 29 2002
Leading zero removed, offset changed by R. J. Mathar, Feb 05 2009
STATUS
approved
Concatenation of sequences (1,2,2,...,n-1,n-1,n,n,n-1,n-1,...,2,2,1) for n >= 1.
+10
5
1, 1, 1, 2, 2, 1, 1, 2, 3, 3, 2, 1, 1, 2, 3, 4, 4, 3, 2, 1, 1, 2, 3, 4, 5, 5, 4, 3, 2, 1, 1, 2, 3, 4, 5, 6, 6, 5, 4, 3, 2, 1, 1, 2, 3, 4, 5, 6, 7, 7, 6, 5, 4, 3, 2, 1, 1, 2, 3, 4, 5, 6, 7, 8, 8, 7, 6, 5, 4, 3, 2, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 9, 8, 7, 6, 5, 4, 3, 2, 1, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 10, 9, 8, 7
OFFSET
1,4
COMMENTS
From Artur Jasinski, Mar 07 2010: (Start)
Zeta(2, k/p) + Zeta(2, (p-k)/p) = (Pi/sin((Pi*a(n))/p))*2, where p=2,3,4, k=1..p-1.
This sequence is the odd subset of A003983 for odd p=3,5,7,9,....
For the even subset of A003983 see A004737. (End)
Table T(n,k) n, k > 0, T(n,k) = n-k+1, if n >= k, T(n,k) = k-n, if n < k. Table read by sides of squares from T(1,n) to T(n,n), then from T(n,n) to T(n,1). General case A209301. Let m be a natural number. The first column of the table T(n,1) is the sequence of the natural numbers A000027. In all columns with number k (k > 1) the segment with the length of (k-1): {m+k-2, m+k-3, ..., m} shifts the sequence A000027. For m=1 the result is A004739, for m=2 the result is A004738, for m=3 the result is A209301. - Boris Putievskiy, Jan 24 2013
LINKS
Boris Putievskiy, Transformations [Of] Integer Sequences And Pairing Functions, arXiv preprint arXiv:1212.2732 [math.CO], 2012.
Eric Weisstein's World of Mathematics, Smarandache Sequences
FORMULA
From Boris Putievskiy, Jan 24 2013: (Start)
For the general case,
a(n) = m*v + (2*v-1)*(t*t-n) + t, where t = floor((sqrt(n) - 1/2) + 1 and v = floor((n-1)/t) - t + 1.
For m=1,
a(n) = v + (2*v-1)*(t*t-n) + t, where t = floor((sqrt(n) - 1/2) + 1 and v = floor((n-1)/t) - t + 1. (End)
EXAMPLE
From Boris Putievskiy, Jan 24 2013: (Start)
The start of the sequence as table:
1, 1, 2, 3, 4, 5, 6, ...
2, 1, 1, 2, 3, 4, 5, ...
3, 2, 1, 1, 2, 3, 4, ...
4, 3, 2, 1, 1, 2, 3, ...
5, 4, 3, 2, 1, 1, 2, ...
6, 5, 4, 3, 2, 1, 1, ...
7, 6, 5, 4, 3, 2, 1, ...
...
The start of the sequence as triangle array read by rows:
1;
1, 1, 2;
2, 1, 1, 2, 3;
3, 2, 1, 1, 2, 3, 4;
4, 3, 2, 1, 1, 2, 3, 4, 5;
5, 4, 3, 2, 1, 1, 2, 3, 4, 5, 6;
6, 5, 4, 3, 2, 1, 1, 2, 3, 4, 5, 6, 7;
...
Row number r contains 2*r - 1 numbers: r-1, r-2, ..., 1, 1, 2, ..., r. (End)
MATHEMATICA
aa = {}; Do[Do[AppendTo[aa, (p/Pi) ArcSin[Sqrt[1/((1/Pi^2) (Zeta[2, k/p] + Zeta[2, (p - k)/p]))]]], {k, 1, p - 1}], {p, 3, 50, 2}]; Round[N[aa, 50]] (* Artur Jasinski, Mar 07 2010 *)
PROG
(Haskell)
a004739 n = a004739_list !! (n-1)
a004739_list = concat $ map (\n -> [1..n] ++ [n, n-1..1]) [1..]
-- Reinhard Zumkeller, Mar 26 2011
KEYWORD
nonn,easy
AUTHOR
R. Muller
EXTENSIONS
More terms from Patrick De Geest, Jun 15 1998
STATUS
approved
Denominator of rational part of Haar measure on Grassmannian space G(n,1).
+10
4
1, 2, 1, 4, 3, 16, 5, 32, 35, 256, 63, 512, 231, 2048, 429, 4096, 6435, 65536, 12155, 131072, 46189, 524288, 88179, 1048576, 676039, 8388608, 1300075, 16777216, 5014575, 67108864, 9694845, 134217728, 300540195
OFFSET
0,2
COMMENTS
Also rational part of denominator of Gamma(n/2+1)/Gamma(n/2+1/2) (cf. A004731).
REFERENCES
D. A. Klain and G.-C. Rota, Introduction to Geometric Probability, Cambridge, p. 67.
LINKS
EXAMPLE
1, 1, 1/2*Pi, 2, 3/4*Pi, 8/3, 15/16*Pi, 16/5, 35/32*Pi, 128/35, 315/256*Pi, ...
The sequence Gamma(n/2+1)/Gamma(n/2+1/2), n >= 0, begins 1/Pi^(1/2), (1/2)*Pi^(1/2), 2/Pi^(1/2), (3/4)*Pi^(1/2), (8/3)/Pi^(1/2), (15/16)*Pi^(1/2), (16/5)/Pi^(1/2), ...
MAPLE
if n mod 2 = 0 then k := n/2; 2*k*Pi*binomial(2*k-1, k)/4^k else k := (n-1)/2; 4^k/binomial(2*k, k); fi;
f:=n->simplify(GAMMA(n/2+1)/GAMMA(n/2+1/2));
MATHEMATICA
Table[ Denominator[ Gamma[n/2+1]/Gamma[n/2+1/2]*Sqrt[Pi]^(1 - 2 Mod[n, 2])], {n, 0, 32}] (* Jean-François Alcover, Jul 16 2012 *)
CROSSREFS
Cf. A004731.
Bisections are A001790 and A101926.
KEYWORD
nonn,easy,nice,frac
STATUS
approved
Define b(1)=1 and for n>1, b(n)=n/b(n-1); then a(n) = ceiling(b(n)).
+10
3
1, 2, 2, 3, 2, 4, 3, 4, 3, 5, 3, 5, 3, 5, 4, 6, 4, 6, 4, 6, 4, 6, 4, 7, 5, 7, 5, 7, 5, 7, 5, 8, 5, 8, 5, 8, 5, 8, 6, 8, 6, 9, 6, 9, 6, 9, 6, 9, 6, 9, 6, 10, 6, 10, 6, 10, 7, 10, 7, 10, 7, 10, 7, 11, 7, 11, 7, 11, 7, 11, 7, 11, 7, 11, 7, 11, 8, 12, 8, 12, 8, 12, 8, 12, 8, 12, 8
OFFSET
1,2
LINKS
EXAMPLE
The first few fractions b(n) are 1, 2, 3/2, 8/3, 15/8, 16/5, 35/16, 128/35, 315/128, 256/63, 693/256, 1024/231, 3003/1024, 2048/429, ...
MAPLE
R:= 1:
b:= 1:
for i from 2 to 100 do
b:= i/b;
R:= R, ceil(b)
od:
R; # Robert Israel, Jul 21 2024
CROSSREFS
For the numerators and denominators of b(n) see A004731 and A004730.
KEYWORD
nonn,look
AUTHOR
N. J. A. Sloane, Nov 29 2020, following a suggestion from Anchar Koops, Nov 24 2020
STATUS
approved
Define b(1)=1 and for n>1, b(n)=n/b(n-1); then a(n) = nearest integer to b(n).
+10
3
1, 2, 2, 3, 2, 3, 2, 4, 2, 4, 3, 4, 3, 5, 3, 5, 3, 5, 4, 6, 4, 6, 4, 6, 4, 6, 4, 7, 4, 7, 4, 7, 5, 7, 5, 8, 5, 8, 5, 8, 5, 8, 5, 8, 5, 9, 5, 9, 6, 9, 6, 9, 6, 9, 6, 9, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 7, 10, 7, 11, 7, 11, 7, 11, 7, 11, 7, 11, 7, 11, 7, 11, 7, 12, 7, 12, 7
OFFSET
1,2
COMMENTS
Since b(3) = 3/2, a(3) could also be taken to be 1.
EXAMPLE
The first few fractions b(n) are 1, 2, 3/2, 8/3, 15/8, 16/5, 35/16, 128/35, 315/128, 256/63, 693/256, 1024/231, 3003/1024, 2048/429, ...
MAPLE
A338720b := proc(n)
option remember ;
if n = 1 then
1;
else
n/procname(n-1) ;
end if;
end proc:
A338720 := proc(n)
round(A338720b(n)) ;
end proc:
seq(A338720(n), n=1..87) ; # R. J. Mathar, Dec 01 2020
MATHEMATICA
b[n_] := b[n] = If[n == 1, 1, n/b[n-1]];
a[n_] := Round[b[n]];
Table[a[n], {n, 1, 87}] (* Jean-François Alcover, Apr 23 2023 *)
CROSSREFS
For the numerators and denominators of b(n) see A004731 and A004730.
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Nov 29 2020, following a suggestion from Anchar Koops, Nov 24 2020
STATUS
approved
Define b(1)=1 and for n>1, b(n)=n/b(n-1); then a(n) = floor(b(n)).
+10
2
1, 2, 1, 2, 1, 3, 2, 3, 2, 4, 2, 4, 2, 4, 3, 5, 3, 5, 3, 5, 3, 5, 3, 6, 4, 6, 4, 6, 4, 6, 4, 7, 4, 7, 4, 7, 4, 7, 5, 7, 5, 8, 5, 8, 5, 8, 5, 8, 5, 8, 5, 9, 5, 9, 5, 9, 6, 9, 6, 9, 6, 9, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 6, 10, 7, 11, 7, 11, 7, 11, 7, 11, 7, 11, 7, 11, 7, 11
OFFSET
1,2
EXAMPLE
The first few fractions b(n) are 1, 2, 3/2, 8/3, 15/8, 16/5, 35/16, 128/35, 315/128, 256/63, 693/256, 1024/231, 3003/1024, 2048/429, ...
MATHEMATICA
a[n_] := Floor[n!!/(n - 1)!!]; Array[a, 90] (* Robert G. Wilson v, Dec 06 2020 *)
CROSSREFS
For the numerators and denominators of b(n) see A004731 and A004730.
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Nov 29 2020, following a suggestion from Anchar Koops, Nov 24 2020
STATUS
approved

Search completed in 0.017 seconds