[go: up one dir, main page]

login
Search: a003779 -id:a003779
     Sort: relevance | references | number | modified | created      Format: long | short | data
A linear divisibility sequence of the fourth order related to A003779.
+20
2
1, 11, 95, 781, 6336, 51205, 413351, 3335651, 26915305, 217172736, 1752296281, 14138673395, 114079985111, 920471087701, 7426955448000, 59925473898301, 483517428660911, 3901330906652795, 31478457514091281, 253988526230055936
OFFSET
1,2
COMMENTS
A003779, which counts spanning trees in the graph P_5 x P_n, is a linear divisibility sequence of order 16. It factors into two fourth-order linear divisibility sequences; this sequence is one of the factors, the other is A143699.
The present sequence is the case P1 = 11, P2 = 23, Q = 1 of the 3 parameter family of 4th-order linear divisibility sequences found by Williams and Guy.
LINKS
H. C. Williams and R. K. Guy, Some fourth-order linear divisibility sequences, Intl. J. Number Theory 7 (5) (2011) 1255-1277.
H. C. Williams and R. K. Guy, Some Monoapparitic Fourth Order Linear Divisibility Sequences Integers, Volume 12A (2012) The John Selfridge Memorial Volume
FORMULA
O.g.f. x*(1 - x^2)/(1 - 11*x + 25*x^2 - 11*x^3 + x^4).
a(n) = A003779(n)/A143699(n).
a(n) = ( T(n,alpha) - T(n,beta) )/(alpha - beta), n >= 1, where alpha = 1/4*(11 + sqrt(29)), beta = 1/4*(11 - sqrt(29)) and where T(n,x) denotes the Chebyshev polynomial of the first kind.
a(n)= U(n-1,1/4*(7 - sqrt(5)))*U(n-1,1/4*(7 + sqrt(5))), n >= 1, where U(n,x) denotes the Chebyshev polynomial of the second kind.
a(n) = the bottom left entry of the 2X2 matrix T(n,M), where M is the 2 X 2 matrix [0, -23/4; 1, 11/2].
See the remarks in A100047 for the general connection between Chebyshev polynomials of the first kind and 4th-order linear divisibility sequences.
a(n) = 11*a(n-1) - 25*a(n-2) + 11*a(n-3) - a(n-4). - Vaclav Kotesovec, Apr 28 2014
MATHEMATICA
a[n_] := ChebyshevU[n-1, 1/4*(7-Sqrt[5])]*ChebyshevU[n-1, 1/4*(7+Sqrt[5])]; Table[a[n]//Round, {n, 1, 20}] (* Jean-François Alcover, Apr 28 2014, after Peter Bala *)
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Peter Bala, Apr 26 2014
STATUS
approved
Square array read by antidiagonals: T(m,n) = number of spanning trees in an m X n grid.
+10
26
1, 1, 1, 1, 4, 1, 1, 15, 15, 1, 1, 56, 192, 56, 1, 1, 209, 2415, 2415, 209, 1, 1, 780, 30305, 100352, 30305, 780, 1, 1, 2911, 380160, 4140081, 4140081, 380160, 2911, 1, 1, 10864, 4768673, 170537640, 557568000, 170537640, 4768673, 10864, 1
OFFSET
1,5
COMMENTS
This is the number of ways the points in an m X n grid can be connected to their orthogonal neighbors such that for any pair of points there is precisely one path connecting them.
a(n,n) = A007341(n).
a(m,n) = number of perfect mazes made from a grid of m X n cells. - Leroy Quet, Sep 08 2007
Also number of domino tilings of the (2m-1) X (2n-1) rectangle with upper left corner removed. For m=2, n=3 the 15 domino tilings of the 3 X 5 rectangle with upper left corner removed are:
. .___.___. . .___.___. . .___.___. . .___.___. . .___.___.
._|___|___| ._|___|___| ._| | |___| ._|___|___| ._| |___| |
| |___|___| | | | |___| | |_|_|___| |___| |___| | |_|___|_|
|_|___|___| |_|_|_|___| |_|___|___| |___|_|___| |_|___|___|
. .___.___. . .___.___. . .___.___. . .___.___. . .___.___.
._|___|___| ._|___|___| ._| | |___| ._|___|___| ._|___|___|
| |___| | | | | | | | | | |_|_| | | |___| | | | | | |___| |
|_|___|_|_| |_|_|_|_|_| |_|___|_|_| |___|_|_|_| |_|_|___|_|
. .___.___. . .___.___. . .___.___. . .___.___. . .___.___.
._|___| | | ._|___| | | ._| | | | | ._|___| | | ._|___|___|
| |___|_|_| | | | |_|_| | |_|_|_|_| |___| |_|_| |___|___| |
|_|___|___| |_|_|_|___| |_|___|___| |___|_|___| |___|___|_|
- Alois P. Heinz, Apr 15 2011
Each row (and column) of the square array is a divisibility sequence, i.e., if n divides m then a(n) divides a(m). It follows that the main diagonal, A007341, is also a divisibility sequence. Row k satisfies a linear recurrence of order 2^k. - Peter Bala, Apr 29 2014
LINKS
Germain Kreweras, Complexité et circuits Eulériens dans les sommes tensorielles de graphes, J. Combin. Theory, B 24 (1978), 202-212. - From N. J. A. Sloane, May 27 2012
FORMULA
T(m,n) = Product_{k=1..n-1} Product_{h=1..m-1} (4*sin(h*Pi/(2*m))^2 + 4*sin(k*Pi/(2*n))^2); [Kreweras] - N. J. A. Sloane, May 27 2012
Equivalently, T(n,m) = resultant( U(n-1,x/2), U(m-1,(4-x)/2 ) = Product_{k = 1..n-1} Product_{h = 1..m-1} (4 - 2*cos(h*Pi/m) - 2*cos(k*Pi/n)), where U(n,x) denotes the Chebyshev polynomial of the second kind. The divisibility properties of the array mentioned in the Comments follow from this representation. - Peter Bala, Apr 29 2014
EXAMPLE
a(2,2) = 4, since we must have exactly 3 of the 4 possible connections: if we have all 4 there are multiple paths between points; if we have fewer some points will be isolated from others.
Array begins:
1, 1, 1, 1, 1, 1, ...
1, 4, 15, 56, 209, 780, ...
1, 15, 192, 2415, 30305, 380160, ...
1, 56, 2415, 100352, 4140081, 170537640, ...
1, 209, 30305, 4140081, 557568000, 74795194705, ...
1, 780, 380160, 170537640, 74795194705, 32565539635200, ...
MAPLE
Digits:=200;
T:=(m, n)->round(Re(evalf(simplify(expand(
mul(mul( 4*sin(h*Pi/(2*m))^2+4*sin(k*Pi/(2*n))^2, h=1..m-1), k=1..n-1)))))); # crude Maple program from N. J. A. Sloane, May 27 2012
MATHEMATICA
T[m_, n_] := Product[4 Sin[h Pi/(2 m)]^2 + 4 Sin[k Pi/(2 n)]^2, {h, m - 1}, {k, n - 1}]; Flatten[Table[FullSimplify[T[k, r - k]], {r, 2, 10}, {k, 1, r - 1}]] (* Ben Branman, Mar 10 2013 *)
PROG
(Python)
# Using graphillion
from graphillion import GraphSet
import graphillion.tutorial as tl
def A116469(n, k):
if n == 1 or k == 1: return 1
universe = tl.grid(n - 1, k - 1)
GraphSet.set_universe(universe)
spanning_trees = GraphSet.trees(is_spanning=True)
return spanning_trees.len()
print([A116469(j + 1, i - j + 1) for i in range(9) for j in range(i + 1)]) # Seiichi Manyama, Apr 12 2020
(PARI) T(n, m) = polresultant(polchebyshev(n-1, 2, x/2), polchebyshev(m-1, 2, (4-x)/2)); \\ Michel Marcus, Apr 13 2020
CROSSREFS
Diagonal gives A007341. Rows and columns 1..10 give A000012, A001353, A006238, A003696, A003779, A139400, A334002, A334003, A334004, A334005.
KEYWORD
nonn,tabl
AUTHOR
Calculated by Hugo van der Sanden after a suggestion from Leroy Quet, Mar 20 2006
STATUS
approved
Number of domino tilings of the 9 X n grid with upper left corner removed iff n is odd.
+10
3
1, 1, 55, 209, 6336, 30305, 817991, 4140081, 108435745, 557568000, 14479521761, 74795194705, 1937528668711, 10021992194369, 259423766712000, 1342421467113969, 34741645659770711, 179796299139278305, 4652799879944138561
OFFSET
0,3
FORMULA
G.f.: -(x^30+x^29-154*x^28 +6777*x^26-1440*x^25-123961*x^24 +26752*x^23 +1132714*x^22-185889*x^21 -5684515*x^20+574750*x^19+16401668*x^18 -708928*x^17 -27757938*x^16+27757938*x^14+708928*x^13 -16401668*x^12 -574750*x^11+5684515*x^10 +185889*x^9-1132714*x^8-26752*x^7 +123961*x^6 +1440*x^5-6777*x^4+154*x^2-x-1) / (x^32-209*x^30+11936*x^28 -274208*x^26 +3112032*x^24-19456019*x^22 +70651107*x^20-152325888*x^18+196664896*x^16 -152325888*x^14+70651107*x^12 -19456019*x^10 +3112032*x^8-274208*x^6 +11936*x^4-209*x^2+1).
MATHEMATICA
A[1, 1] = 1;
A[m_, n_] := A[m, n] = Module[{i, j, s, t, M}, Which[m == 0 || n == 0, 1, m < n, A[n, m], True, s = Mod[n*m, 2]; M[i_, j_] /; j < i := -M[j, i]; M[_, _] = 0; For[i = 1, i <= n, i++, For[j = 1, j <= m, j++, t = (i - 1)*m + j - s; If[i > 1 || j > 1 || s == 0, If[j < m, M[t, t + 1] = 1]; If[i < n, M[t, t + m] = 1 - 2*Mod[j, 2]]]]]; Sqrt[Det[Array[M, {n*m - s, n*m - s}]] ]]];
a[n_] := A[9, n];
a /@ Range[0, 18] (* Jean-François Alcover, Feb 27 2020, after Alois P. Heinz in A189006 *)
CROSSREFS
9th row of array A189006.
Bisection gives: A028471 (even part), A003779 (odd part).
KEYWORD
nonn,easy
AUTHOR
Alois P. Heinz, Apr 15 2011
STATUS
approved
Number of spanning trees in the n X 5 king graph.
+10
3
1, 27648, 146356224, 698512774464, 3271331573452800, 15258885095892902976, 71111090441547013886784, 331335100372867196224868352, 1543757070688065237574186369344, 7192607774929149127350811889484864, 33511424900308657559195109303117533184, 156134620449573478209362729027690283037248
OFFSET
1,2
LINKS
Eric Weisstein's World of Mathematics, King Graph
Eric Weisstein's World of Mathematics, Spanning Tree
FORMULA
Empirical g.f.: -x*(218700000000*x^8 - 2040471000000*x^7 + 538526880000*x^6 + 311791396500*x^5 - 17462695797*x^4 - 80280747*x^3 + 10513308*x^2 - 21759*x - 1) / (656100000000*x^8 - 4293081000000*x^7 + 4819127400000*x^6 - 930215250900*x^5 + 51621632181*x^4 - 1033572501*x^3 + 5949540*x^2 - 5889*x + 1). - Vaclav Kotesovec, Dec 09 2020
PROG
(Python)
# Using graphillion
from graphillion import GraphSet
def make_nXk_king_graph(n, k):
grids = []
for i in range(1, k + 1):
for j in range(1, n):
grids.append((i + (j - 1) * k, i + j * k))
if i < k:
grids.append((i + (j - 1) * k, i + j * k + 1))
if i > 1:
grids.append((i + (j - 1) * k, i + j * k - 1))
for i in range(1, k * n, k):
for j in range(1, k):
grids.append((i + j - 1, i + j))
return grids
def A338029(n, k):
if n == 1 or k == 1: return 1
universe = make_nXk_king_graph(n, k)
GraphSet.set_universe(universe)
spanning_trees = GraphSet.trees(is_spanning=True)
return spanning_trees.len()
def A339257(n):
return A338029(n, 5)
print([A339257(n) for n in range(1, 15)])
CROSSREFS
Column 5 of A338029.
Cf. A003779.
KEYWORD
nonn
AUTHOR
Seiichi Manyama, Nov 29 2020
STATUS
approved
Number of spanning trees in the k_1 X ... X k_j grid graph, where (k_1 - 1, ..., k_j - 1) is the partition with Heinz number n.
+10
1
1, 1, 1, 4, 1, 15, 1, 384, 192, 56, 1, 31500, 1, 209, 2415, 42467328, 1, 49766400, 1, 2558976, 30305, 780, 1, 3500658000000, 100352, 2911, 8193540096000, 207746836, 1, 76752081000, 1, 20776019874734407680, 380160, 10864, 4140081, 242716067758080000000, 1
OFFSET
1,4
COMMENTS
a(n) > 1 precisely when n is composite.
LINKS
Pontus von Brömssen, Table of n, a(n) for n = 1..1151
Germain Kreweras, Complexité et circuits Eulériens dans les sommes tensorielles de graphes, J. Combin. Theory B 24 (1978), 202-212.
Eric Weisstein's World of Mathematics, Grid Graph
Eric Weisstein's World of Mathematics, Spanning Tree
FORMULA
a(n) = Product_{n_1=0..k_1-1, ..., n_j=0..k_j-1; not all n_i=0} Sum_{i=1..j} (2*(1 - cos(n_i*Pi/k_i))) / Product_{i=1..j} k_i, where (k_1 - 1, ..., k_j - 1) is the partition with Heinz number n.
EXAMPLE
The partition (2, 2, 1) has Heinz number 18 and the 3 X 3 X 2 grid graph has a(18) = 49766400 spanning trees.
CROSSREFS
2 X n grid: A001353(n) = a(2*prime(n-1))
3 X n grid: A006238(n) = a(3*prime(n-1))
4 X n grid: A003696(n) = a(5*prime(n-1))
5 X n grid: A003779(n) = a(7*prime(n-1))
6 X n grid: A139400(n) = a(11*prime(n-1))
7 X n grid: A334002(n) = a(13*prime(n-1))
8 X n grid: A334003(n) = a(17*prime(n-1))
9 X n grid: A334004(n) = a(19*prime(n-1))
10 X n grid: A334005(n) = a(23*prime(n-1))
n X n grid: A007341(n) = a(prime(n-1)^2)
m X n grid: A116469(m,n) = a(prime(m-1)*prime(n-1))
2 X 2 X n grid: A003753(n) = a(4*prime(n-1))
2 X n X n grid: A067518(n) = a(2*prime(n-1)^2)
n X n X n grid: A071763(n) = a(prime(n-1)^3)
2 X ... X 2 grid: A006237(n) = a(2^n)
KEYWORD
nonn
AUTHOR
STATUS
approved

Search completed in 0.011 seconds