OFFSET
0,3
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
R. P. Stanley, Enumerative Combinatorics, Cambridge, Vol. 2, 1999; see Example 5.6.10.
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..10
Aaron R. Bagheri, Classifying the Jacobian Groups of Adinkras, (2017), HMC Senior Theses.
Frank Harary, John P. Hayes, and Horng-Jyh Wu, A survey of the theory of hypercube graphs, Comput. Math. Appl., 15(4) (1988), 277-289.
D. E. Knuth, Letter to N. J. A. Sloane, Oct. 1994
Germain Kreweras, Complexité et circuits Eulériens dans les sommes tensorielles de graphes, J. Combin. Theory, B 24 (1978), 202-212. See p. 210, Parag. 4.
Eric Weisstein's World of Mathematics, Hypercube Graph
Eric Weisstein's World of Mathematics, Spanning Tree
FORMULA
a(n) = 2^(2^n-1-n)*1^binomial(n, 1)*2^binomial(n, 2)*...*n^binomial(n, n).
MATHEMATICA
Table[2^(2^n - 1 - n) Product[k^Binomial[n, k], {k, n}], {n, 0, 10}]
PROG
(PARI) a(n)=2^(2^n-n-1)*prod(k=1, n, k^binomial(n, k))
CROSSREFS
KEYWORD
nonn,easy,nice
AUTHOR
EXTENSIONS
Description expanded July 1995
STATUS
approved