[go: up one dir, main page]

login
Search: a002947 -id:a002947
     Sort: relevance | references | number | modified | created      Format: long | short | data
Decimal expansion of cube root of 4.
(Formerly M3771)
+10
20
1, 5, 8, 7, 4, 0, 1, 0, 5, 1, 9, 6, 8, 1, 9, 9, 4, 7, 4, 7, 5, 1, 7, 0, 5, 6, 3, 9, 2, 7, 2, 3, 0, 8, 2, 6, 0, 3, 9, 1, 4, 9, 3, 3, 2, 7, 8, 9, 9, 8, 5, 3, 0, 0, 9, 8, 0, 8, 2, 8, 5, 7, 6, 1, 8, 2, 5, 2, 1, 6, 5, 0, 5, 6, 2, 4, 2, 1, 9, 1, 7, 3, 2, 7, 3, 5, 4, 4, 2, 1, 3, 2, 6, 2, 2, 2, 0, 9, 5, 7, 0, 2, 2, 9, 3, 4, 7, 6
OFFSET
1,2
COMMENTS
Let h = 4^(1/3). Then (h+1,0) is the x-intercept of the shortest segment from the x-axis through (1,2) to the y-axis; see A197008. - Clark Kimberling, Oct 10 2011
Let h = 4^(1/3). The relative maximum of xy(x+y)=1 is (-1/sqrt(h), h). - Clark Kimberling, Oct 05 2020
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
Horace S. Uhler, Many-figure approximations for cubed root of 2, cubed root of 3, cubed root of 4, and cubed root of 9 with chi2 data, Scripta Math. 18, (1952), p. 173-176.
LINKS
FORMULA
Equals Product_{k>=0} (1 + (-1)^k/(3*k + 1)). - Amiram Eldar, Jul 25 2020
Equals A002580^2. - Michel Marcus, Jan 08 2022
Equals hypergeom([1/3, 1/6], [2/3], 1). - Peter Bala, Mar 02 2022
EXAMPLE
1.587401051968199474751705639272308260391493327899853...
MATHEMATICA
RealDigits[N[4^(1/3), 200]] (* Vladimir Joseph Stephan Orlovsky, May 27 2010 *)
PROG
(PARI) default(realprecision, 20080); x=4^(1/3); for (n=1, 20000, d=floor(x); x=(x-d)*10; write("b005480.txt", n, " ", d)); \\ Harry J. Smith, May 07 2009, with a correction made May 19 2009
CROSSREFS
Cf. A002947 (continued fraction). - Harry J. Smith, May 07 2009
Cf. A002580 (cube root of 2).
KEYWORD
nonn,cons,easy
AUTHOR
N. J. A. Sloane; entry revised Apr 23 2006
STATUS
approved
Continued fraction for cube root of 2.
(Formerly M2220)
+10
16
1, 3, 1, 5, 1, 1, 4, 1, 1, 8, 1, 14, 1, 10, 2, 1, 4, 12, 2, 3, 2, 1, 3, 4, 1, 1, 2, 14, 3, 12, 1, 15, 3, 1, 4, 534, 1, 1, 5, 1, 1, 121, 1, 2, 2, 4, 10, 3, 2, 2, 41, 1, 1, 1, 3, 7, 2, 2, 9, 4, 1, 3, 7, 6, 1, 1, 2, 2, 9, 3, 1, 1, 69, 4, 4, 5, 12, 1, 1, 5, 15, 1, 4
OFFSET
0,2
REFERENCES
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
E. Bombieri and A. J. van der Poorten, Continued fractions of algebraic numbers, In: W. Bosma, A. van der Poorten (eds), Computational Algebra and Number Theory. Mathematics and Its Applications, vol. 325.
Ashok Kumar Gupta and Ashok Kumar Mittal, Bifurcating continued fractions, arXiv:math/0002227 [math.GM] (2000).
S. Lang and H. Trotter, Continued fractions for some algebraic numbers, J. Reine Angew. Math. 255 (1972), 112-134.
S. Lang and H. Trotter, Continued fractions for some algebraic numbers, J. Reine Angew. Math. 255 (1972), 112-134. [Annotated scanned copy]
Eric Weisstein's World of Mathematics, Delian Constant.
G. Xiao, Contfrac
FORMULA
From Robert Israel, Jul 30 2014: (Start)
Bombieri/van der Poorten give a complicated formula:
a(n) = floor((-1)^(n+1)*3*p(n)^2/(q(n)*(p(n)^3-2*q(n)^3)) - q(n-1)/q(n)),
p(n+1) = a(n)*p(n) + p(n-1),
q(n+1) = a(n)*q(n) + q(n-1),
with a(1) = 1, p(1) = 1, q(1) = 0, p(2) = 1, q(2) = 1. (End)
EXAMPLE
2^(1/3) = 1.25992104989487316... = 1 + 1/(3 + 1/(1 + 1/(5 + 1/(1 + ...)))).
MAPLE
N:= 100: # to get a(1) to a(N)
a[1] := 1: p[1] := 1: q[1] := 0: p[2] := 1: q[2] := 1:
for n from 2 to N do
a[n] := floor((-1)^(n+1)*3*p[n]^2/(q[n]*(p[n]^3-2*q[n]^3)) - q[n-1]/q[n]);
p[n+1] := a[n]*p[n] + p[n-1];
q[n+1] := a[n]*q[n] + q[n-1];
od:
seq(a[i], i=1..N); # Robert Israel, Jul 30 2014
MATHEMATICA
ContinuedFraction[Power[2, (3)^-1], 70] (* Harvey P. Dale, Sep 29 2011 *)
PROG
(PARI) allocatemem(932245000); default(realprecision, 21000); x=contfrac(2^(1/3)); for (n=1, 20000, write("b002945.txt", n-1, " ", x[n])); \\ Harry J. Smith, May 08 2009
(Magma) ContinuedFraction(2^(1/3)); // Vincenzo Librandi, Oct 08 2017
CROSSREFS
Cf. A002946, A002947, A002948, A002949, A002580 (decimal expansion).
Cf. A002351, A002352 (convergents).
KEYWORD
cofr,nonn
EXTENSIONS
BCMATH link from Keith R Matthews (keithmatt(AT)gmail.com), Jun 04 2006
Offset changed by Andrew Howroyd, Jul 04 2024
STATUS
approved

Search completed in 0.010 seconds