[go: up one dir, main page]

login
A002947
Continued fraction for cube root of 4.
(Formerly M0200)
3
1, 1, 1, 2, 2, 1, 3, 2, 3, 1, 3, 1, 30, 1, 4, 1, 2, 9, 6, 4, 1, 1, 2, 7, 2, 3, 2, 1, 6, 1, 1, 1, 25, 1, 7, 7, 1, 1, 1, 1, 266, 1, 3, 2, 1, 3, 60, 1, 5, 1, 8, 5, 6, 1, 4, 20, 1, 4, 1, 1, 14, 1, 4, 4, 1, 1, 1, 1, 7, 3, 1, 1, 2, 1, 3, 1, 4, 4, 1, 1, 1, 3, 1, 34, 8, 2, 10, 6, 3, 1, 2, 31, 1, 1, 1, 4, 3, 44, 1, 45
OFFSET
0,4
REFERENCES
H. P. Robinson, Letter to N. J. A. Sloane, Nov 13 1973.
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
S. Lang and H. Trotter, Continued fractions for some algebraic numbers, J. Reine Angew. Math. 255 (1972), 112-134.
S. Lang and H. Trotter, Continued fractions for some algebraic numbers, J. Reine Angew. Math. 255 (1972), 112-134. [Annotated scanned copy]
Gang Xiao, Contfrac
EXAMPLE
4^(1/3) = 1.58740105196819947... = 1 + 1/(1 + 1/(1 + 1/(2 + 1/(2 + ...)))). - Harry J. Smith, May 08 2009
MATHEMATICA
ContinuedFraction[4^(1/3), 80] (* Alonso del Arte, Jul 24 2015 *)
PROG
(PARI) { allocatemem(932245000); default(realprecision, 21000); x=contfrac(4^(1/3)); for (n=1, 20000, write("b002947.txt", n-1, " ", x[n])); } \\ Harry J. Smith, May 08 2009
(Magma) [ContinuedFraction(4^(1/3))]; // Vincenzo Librandi, Aug 02 2015
CROSSREFS
Cf. A005480 (decimal expansion). - Harry J. Smith, May 08 2009
Cf. A002355, A002356 (convergents).
Sequence in context: A130816 A109951 A116608 * A241605 A128180 A209279
KEYWORD
nonn,cofr,easy
EXTENSIONS
More terms from Antonio G. Astudillo (afg_astudillo(AT)lycos.com), Mar 29 2003
Offset changed by Andrew Howroyd, Jul 04 2024
STATUS
approved