[go: up one dir, main page]

login
Search: a002889 -id:a002889
     Sort: relevance | references | number | modified | created      Format: long | short | data
Triangle read by rows giving number of arrangements of k dumbbells on 2 X n grid (n >= 0, k >= 0).
+10
25
1, 1, 1, 1, 4, 2, 1, 7, 11, 3, 1, 10, 29, 26, 5, 1, 13, 56, 94, 56, 8, 1, 16, 92, 234, 263, 114, 13, 1, 19, 137, 473, 815, 667, 223, 21, 1, 22, 191, 838, 1982, 2504, 1577, 424, 34, 1, 25, 254, 1356, 4115, 7191, 7018, 3538, 789, 55, 1, 28, 326, 2054, 7646, 17266, 23431
OFFSET
0,5
COMMENTS
Equivalently, T(n,k) is the number of k-matchings in the ladder graph L_n = P_2 X P_n. - Emeric Deutsch, Dec 25 2004
In other words, triangle of number of monomer-dimer tilings on (2,n)-block with k dimers. If z marks the size of the block and t marks the dimers, then it is easy to see that the g.f. for indecomposable tilings, i.e., those that cannot be split vertically into smaller tilings, is g = (1+t)*z + t^2*z^2 + 2*t*z^2 + 2*t^2*z^3 + 2*t^3*z^4 + ... = (1+t)*z + t^2*z^2 + 2*t*z^2/(1-t*z); then the g.f. is 1/(1-g) = (1-t*z)/(1 - z - 2*t*z - t*z^2 + t^3*z^3) (see eq. (4) of the Grimson reference). From this the recurrence of the McQuistan & Lichtman reference follows at once. - Emeric Deutsch, Oct 16 2006
LINKS
R. C. Grimson, Exact formulas for 2 x n arrays of dumbbells, J. Math. Phys., 15.2 (1974), 214-216. (Annotated scanned copy)
R. C. Grimson, Exact formulas for 2 x n arrays of dumbbells, J. Math. Phys., 15 (1974), 214-216.
R. B. McQuistan and S. J. Lichtman, Exact recursion relation for 2 x N arrays of dumbbells, J. Math. Phys., 11 (1970), 3095-3099.
D. G. Rogers, An application of renewal sequences to the dimer problem, pp. 142-153 of Combinatorial Mathematics VI (Armidale 1978), Lect. Notes Math. 748, 1979.
Eric Weisstein's World of Mathematics, Ladder Graph
Eric Weisstein's World of Mathematics, Matching-Generating Polynomial
Donovan Young, The Number of Domino Matchings in the Game of Memory, J. Int. Seq., Vol. 21 (2018), Article 18.8.1.
Donovan Young, Generating Functions for Domino Matchings in the 2 * k Game of Memory, arXiv:1905.13165 [math.CO], 2019. Also in J. Int. Seq., Vol. 22 (2019), Article 19.8.7.
FORMULA
From Emeric Deutsch, Dec 25 2004: (Start)
The row generating polynomials P[n] satisfy P[n] = (1 + 2*t)*P[n-1] + t*P[n-2] - t^3*P[n-3] with P[0] = 1, P[1] = 1+t, P[2] = 1 + 4*t + 2*t^2.
G.f.: (1-t*z)/(1 - z - 2*t*z - t*z^2 + t^3*z^3). (End)
T(n,k) = T(n-1,k) + 2*T(n-1,k-1) + T(n-2,k-1) - T(n-3,k-3).
EXAMPLE
T(3, 2)=11 because in the 2 X 3 grid with vertex set {O(0, 0), A(1, 0), B(2, 0), C(2, 1), D(1, 1), E(0, 1)} and edge set {OA, AB, ED, DC, UE, AD, BC} we have the following eleven 2-matchings: {OA, BC}, {OA, DC}, {OA, ED}, {AB, DC}, {AB, ED}, {AB, OE}, {BC, AD}, {BC, ED}, {BC, OA}, {BC, OE} and {DC, OE}. - Emeric Deutsch, Dec 25 2004
Triangle starts:
1;
1, 1;
1, 4, 2;
1, 7, 11, 3;
1, 10, 29, 26, 5;
MAPLE
F[0]:=1:F[1]:=1+t:F[2]:=1+4*t+2*t^2:for n from 3 to 10 do F[n]:=sort(expand((1+2*t)*F[n-1]+t*F[n-2]-t^3*F[n-3])) od: for n from 0 to 10 do seq(coeff(t*F[n], t^k), k=1..n+1) od; # yields sequence in triangular form - Emeric Deutsch
MATHEMATICA
p[n_] := p[n] = (1 + 2t) p[n-1] + t*p[n-2] - t^3*p[n-3]; p[0] = 1; p[1] = 1+t; p[2] = 1 + 4t + 2t^2; Flatten[Table[CoefficientList[Series[p[n], {t, 0, n}], t], {n, 0, 10}]][[;; 62]] (* Jean-François Alcover, Jul 13 2011, after Emeric Deutsch *)
CoefficientList[LinearRecurrence[{1 + 2 x, x, -x^3}, {1 + x, 1 + 4 x + 2 x^2, 1 + 7 x + 11 x^2 + 3 x^3}, {0, 10}], x] // Flatten (* Eric W. Weisstein, Apr 03 2018 *)
CoefficientList[CoefficientList[Series[-(1 + x z) (-1 - x + x^2 z)/(1 - z - 2 x z - x z^2 + x^3 z^3), {z, 0, 10}], z], x] // Flatten (* Eric W. Weisstein, Apr 03 2018 *)
PROG
(Haskell)
a046741 n k = a046741_tabl !! n !! k
a046741_row n = a046741_tabl !! n
a046741_tabl = [[1], [1, 1], [1, 4, 2]] ++ f [1] [1, 1] [1, 4, 2] where
f us vs ws = ys : f vs ws ys where
ys = zipWith (+) (zipWith (+) (ws ++ [0]) ([0] ++ map (* 2) ws))
(zipWith (-) ([0] ++ vs ++ [0]) ([0, 0, 0] ++ us))
-- Reinhard Zumkeller, Jan 18 2014
CROSSREFS
Diagonals give A002940, A002941, A002889.
Row sums yield A030186. T(n,n) = Fibonacci(n+1) (A000045).
KEYWORD
nonn,easy,nice,tabl
EXTENSIONS
More terms from Larry Reeves (larryr(AT)acm.org), Apr 07 2000
Formula fixed by Reinhard Zumkeller, Jan 18 2014
STATUS
approved
Arrays of dumbbells.
(Formerly M3415 N1381)
+10
17
1, 4, 11, 26, 56, 114, 223, 424, 789, 1444, 2608, 4660, 8253, 14508, 25343, 44030, 76136, 131110, 224955, 384720, 656041, 1115784, 1893216, 3205416, 5416441, 9136084, 15384563, 25866914, 43429784, 72821274, 121953943, 204002680, 340886973, 569047468, 949022608
OFFSET
1,2
COMMENTS
Whitney transform of n. The Whitney transform maps the sequence with g.f. g(x) to that with g.f. (1/(1-x))g(x(1+x)). - Paul Barry, Feb 16 2005
a(n-1) is the permanent of the n X n 0-1 matrix with 1 in (i,j) position iff (i=1 and j<n) or 0<=i-j<=2 or (j=n and i>1). For example, with n=5, a(4) = per([[1, 1, 1, 1, 0], [1, 1, 1, 1, 1], [1, 1, 1, 1, 1], [0, 1, 1, 1, 1], [0, 0, 1, 1, 1]]) = 26. - David Callan, Jun 07 2006
a(n) is the internal path length of the Fibonacci tree of order n+2. A Fibonacci tree of order n (n>=2) is a complete binary tree whose left subtree is the Fibonacci tree of order n-1 and whose right subtree is the Fibonacci tree of order n-2; each of the Fibonacci trees of order 0 and 1 is defined as a single node. The internal path length of a tree is the sum of the levels of all of its internal (i.e. non-leaf) nodes. - Emeric Deutsch, Jun 15 2010
Partial Sums of A023610 - John Molokach, Jul 03 2013
REFERENCES
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983,(2.3.14).
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
D. E. Knuth, The Art of Computer Programming, Vol. 3, 2nd edition, Addison-Wesley, Reading, MA, 1998, p. 417.
LINKS
Carlos Alirio Rico Acevedo and Ana Paula Chaves, Double-Recurrence Fibonacci Numbers and Generalizations, arXiv:1903.07490 [math.NT], 2019.
R. C. Grimson, Exact formulas for 2 x n arrays of dumbbells, J. Math. Phys., 15 (1974), 214-216.
R. C. Grimson, Exact formulas for 2 x n arrays of dumbbells, J. Math. Phys., 15.2 (1974), 214-216. (Annotated scanned copy)
Y. Horibe, An entropy view of Fibonacci trees, Fibonacci Quarterly, 20, No. 2, 1982, 168-178.
R. B. McQuistan and S. J. Lichtman, Exact recursion relation for 2 x N arrays of dumbbells, J. Math. Phys., 11 (1970), 3095-3099.
FORMULA
a(n) = 2*a(n-1) - a(n-3) + A000045(n+1).
G.f.: x*(1+x)/((1-x)*(1-x-x^2)^2).
a(n) = Sum_{k=0..n} ( Sum_{i=0..n} k*C(k, i-k) ). - Paul Barry, Feb 16 2005
E.g.f.: 2*exp(x) + exp(x/2)*((55*x - 50)*cosh(sqrt(5)*x/2) + sqrt(5)*(25*x - 22)*sinh(sqrt(5)*x/2))/25. - Stefano Spezia, Dec 03 2023
MATHEMATICA
a[n_]:= a[n]= If[n<3, n^2, 2a[n-1] -a[n-3] +Fibonacci[n+1]]; Array[a, 32] (* Jean-François Alcover, Jul 31 2018 *)
PROG
(Haskell)
a002940 n = a002940_list !! (n-1)
a002940_list = 1 : 4 : 11 : zipWith (+)
(zipWith (-) (map (* 2) $ drop 2 a002940_list) a002940_list)
(drop 5 a000045_list)
-- Reinhard Zumkeller, Jan 18 2014
(PARI) my(x='x+O('x^35)); Vec((1+x)/((1-x)*(1-x-x^2)^2)) \\ G. C. Greubel, Jan 31 2019
(Magma) m:=35; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!( (1+x)/((1-x)*(1-x-x^2)^2) )); // G. C. Greubel, Jan 31 2019
(Sage) ((1+x)/((1-x)*(1-x-x^2)^2)).series(x, 35).coefficients(x, sparse=False) # G. C. Greubel, Jan 31 2019
KEYWORD
nonn,easy
EXTENSIONS
More terms from Henry Bottomley, Jun 02 2000
STATUS
approved
Arrays of dumbbells.
(Formerly M4396 N1852)
+10
12
1, 7, 29, 94, 263, 667, 1577, 3538, 7622, 15900, 32314, 64274, 125561, 241569, 458715, 861242, 1601081, 2950693, 5396209, 9801012, 17692092, 31759800, 56727588, 100861716, 178585489, 314995915, 553650761, 969967510, 1694235803
OFFSET
1,2
REFERENCES
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983,(2.3.14).
R. C. Grimson, Exact formulas for 2 x n arrays of dumbbells, J. Math. Phys., 15 (1974), 214-216.
R. B. McQuistan and S. J. Lichtman, Exact recursion relation for 2 x N arrays of dumbbells, J. Math. Phys., 11 (1970), 3095-3099.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
R. C. Grimson, Exact formulas for 2 x n arrays of dumbbells, J. Math. Phys., 15.2 (1974), 214-216. (Annotated scanned copy)
FORMULA
G.f.: (1+x)^2/((1-x-x^2)^3*(1-x)^2).
a(n) = 2*a(n-1) - a(n-3) + A002940(n) + A002940(n-1).
MATHEMATICA
CoefficientList[(1+x)^2/((1-x-x^2)^3*(1-x)^2) + O[x]^30, x] (* Jean-François Alcover, Jul 31 2018 *)
LinearRecurrence[{5, -7, -2, 10, -2, -5, 1, 1}, {1, 7, 29, 94, 263, 667, 1577, 3538}, 30] (* Harvey P. Dale, Aug 29 2021 *)
PROG
(Haskell)
a002941 n = a002941_list !! (n-1)
a002941_list = 1 : 7 : 29 : zipWith (+)
(zipWith (-) (map (* 2) $ drop 2 a002941_list) a002941_list)
(drop 2 $ zipWith (+) (tail a002940_list) a002940_list)
-- Reinhard Zumkeller, Jan 18 2014
(PARI) x='x+O('x^30); Vec((1+x)^2/((1-x-x^2)^3*(1-x)^2)) \\ Altug Alkan, Jul 31 2018
(Magma) m:=30; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!( (1+x)^2/((1-x-x^2)^3*(1-x)^2) )); // G. C. Greubel, Jan 31 2019
(Sage) ((1+x)^2/((1-x-x^2)^3*(1-x)^2)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jan 31 2019
KEYWORD
nonn,easy
EXTENSIONS
More terms from Henry Bottomley, Jun 02 2000
STATUS
approved
a(n) = (9n^2 + 9n + 4)/2.
+10
10
2, 11, 29, 56, 92, 137, 191, 254, 326, 407, 497, 596, 704, 821, 947, 1082, 1226, 1379, 1541, 1712, 1892, 2081, 2279, 2486, 2702, 2927, 3161, 3404, 3656, 3917, 4187, 4466, 4754, 5051, 5357, 5672, 5996, 6329, 6671, 7022, 7382, 7751, 8129, 8516, 8912, 9317
OFFSET
0,1
COMMENTS
Third column of A046741.
REFERENCES
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983,(2.3.14).
FORMULA
G.f.: (1+2*x)*(2+x)/(1-x)^3. Generally, g.f. for k-th column of A046741 is coefficient of y^k in expansion of (1-y)/((1-y-y^2)*(1-y)-(1+y)*x).
a(n) = 9*n + a(n-1), with n>0, a(0)=2. - Vincenzo Librandi, Aug 07 2010
E.g.f.: (4 +18*x +9*x^2)*exp(x)/2. - G. C. Greubel, Jan 31 2019
MATHEMATICA
Table[2 +9*n*(1+n)/2, {n, 0, 50}] (* G. C. Greubel, Jan 31 2019 *)
LinearRecurrence[{3, -3, 1}, {2, 11, 29}, 50] (* Harvey P. Dale, Jan 12 2020 *)
PROG
(PARI) for (n=0, 1000, write("b062123.txt", n, " ", 2 + (n + n^2)*9/2) ) \\ Harry J. Smith, Aug 02 2009
(Magma) [2 +9*n*(1+n)/2: n in [0..50]]; // G. C. Greubel, Jan 31 2019
(Sage) [2 +9*n*(1+n)/2 for n in range(50)] # G. C. Greubel, Jan 31 2019
(GAP) List([0..50], n -> 2 +9*n*(1+n)/2); # G. C. Greubel, Jan 31 2019
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Vladeta Jovovic, Jun 04 2001
EXTENSIONS
More terms from Larry Reeves (larryr(AT)acm.org), Jun 06 2001
STATUS
approved
Arrays of dumbbells.
+10
9
1, 13, 92, 473, 1982, 7191, 23431, 70234, 196941, 522939, 1327002, 3240917, 7660538, 17602967, 39466363, 86593478, 186399956, 394478234, 822229746, 1690521204, 3433033150, 6893852746, 13702694284, 26982983126, 52680389239
OFFSET
1,2
REFERENCES
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983,(2.3.14).
R. C. Grimson, Exact formulas for 2 x n arrays of dumbbells, J. Math. Phys., 15 (1974), 214-216.
R. B. McQuistan and S. J. Lichtman, Exact recursion relation for 2 x N arrays of dumbbells, J. Math. Phys., 11 (1970), 3095-3099.
LINKS
Index entries for linear recurrences with constant coefficients, signature (9,-31,44,4,-84,66,46,-74,-4,36,-4,-9,1,1).
FORMULA
G.f.: (1+x)^4/((1-x)^4*(1-x-x^2)^5).
a(n) = 2*a(n-1) - a(n-3) + A002889(n) + A002889(n-1).
MATHEMATICA
CoefficientList[Series[(1+x)^4/((1-x)^4*(1-x-x^2)^5), {x, 0, 30}], x] (* G. C. Greubel, Jan 31 2019 *)
PROG
(Haskell)
a055608 n = a055608_list !! (n-1)
a055608_list = 1 : 13 : 92 : zipWith (+)
(zipWith (-) (map (* 2) $ drop 2 a055608_list) a055608_list)
(drop 2 $ zipWith (+) (tail a002889_list) a002889_list)
-- Reinhard Zumkeller, Jan 18 2014
(PARI) my(x='x+O('x^30)); Vec((1+x)^4/((1-x)^4*(1-x-x^2)^5)) \\ G. C. Greubel, Jan 31 2019
(Magma) m:=30; R<x>:=PowerSeriesRing(Integers(), m); Coefficients(R!( (1+x)^4/((1-x)^4*(1-x-x^2)^5) )); // G. C. Greubel, Jan 31 2019
(Sage) ((1+x)^4/((1-x)^4*(1-x-x^2)^5)).series(x, 30).coefficients(x, sparse=False) # G. C. Greubel, Jan 31 2019
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Henry Bottomley, Jun 02 2000
STATUS
approved
Seventh column of A046741.
+10
9
13, 223, 1577, 7018, 23431, 64316, 153190, 327718, 644573, 1185025, 2061259, 3423422, 5467399, 8443318, 12664784, 18518842, 26476669, 37104995, 51078253, 69191458, 92373815, 121703056, 158420506, 203946878, 259898797, 328106053
OFFSET
0,1
REFERENCES
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983, (2.3.14).
FORMULA
G.f.: (2*x^6 + 14*x^5 + 72*x^4 + 207*x^3 + 289*x^2 + 132*x + 13)/(1-x)^7. Generally, g.f. for k-th column of A046741 is coefficient of y^k in expansion of (1-y)/((1-y-y^2)*(1-y)-(1+y)*x).
From G. C. Greubel, Jan 31 2019: (Start)
a(n) = (81*n^6 + 567*n^5 + 2205*n^4 + 4545*n^3 + 5674*n^2 + 3728*n + 1040)/80.
E.g.f.: (1040 + 16800*x + 45760*x^2 + 39240*x^3 + 13140*x^4 + 1782*x^5 + 81*x^6)*exp(x)/80. (End)
MATHEMATICA
Table[(81*n^6 +567*n^5 +2205*n^4 +4545*n^3 +5674*n^2 +3728*n +1040)/80, {n, 0, 40}] (* G. C. Greubel, Jan 31 2019 *)
LinearRecurrence[{7, -21, 35, -35, 21, -7, 1}, {13, 223, 1577, 7018, 23431, 64316, 153190}, 30] (* Harvey P. Dale, Jun 07 2022 *)
PROG
(PARI) vector(40, n, n--; (81*n^6 +567*n^5 +2205*n^4 +4545*n^3 +5674*n^2 +3728*n +1040)/80) \\ G. C. Greubel, Jan 31 2019
(Magma) [(81*n^6 +567*n^5 +2205*n^4 +4545*n^3 +5674*n^2 +3728*n +1040)/80: n in [0..40]]; // G. C. Greubel, Jan 31 2019
(Sage) [(81*n^6 +567*n^5 +2205*n^4 +4545*n^3 +5674*n^2 +3728*n +1040)/80 for n in range(40)] # G. C. Greubel, Jan 31 2019
(GAP) List([0..40], n -> (81*n^6 +567*n^5 +2205*n^4 +4545*n^3 +5674*n^2 +3728*n +1040)/80); # G. C. Greubel, Jan 31 2019
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Jun 04 2001
EXTENSIONS
More terms from Larry Reeves (larryr(AT)acm.org), Jun 06 2001
STATUS
approved
Fourth column of A046741.
+10
3
3, 26, 94, 234, 473, 838, 1356, 2054, 2959, 4098, 5498, 7186, 9189, 11534, 14248, 17358, 20891, 24874, 29334, 34298, 39793, 45846, 52484, 59734, 67623, 76178, 85426, 95394, 106109, 117598, 129888, 143006, 156979, 171834, 187598, 204298
OFFSET
0,1
REFERENCES
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983, (2.3.14).
FORMULA
G.f.: (3 + 14*x + 8*x^2 + 2*x^3)/(1-x)^4. Generally, g.f. for k-th column of A046741 is coefficient of y^k in expansion of (1-y)/((1-y-y^2)*(1-y) - (1+y)*x).
From G. C. Greubel, Jan 31 2019: (Start)
a(n) = (6 + 19*n + 18*n^2 + 9*n^3)/2.
a(n) = 4*a(n-1) - 6*a(n-2) + 4*a(n-3) - a(n-4).
E.g.f.: (6 + 46*x + 45*x^2 + 9*x^3)*exp(x)/2. (End)
MATHEMATICA
Table[(6+19*n+18*n^2+9*n^3)/2, {n, 0, 40}] (* G. C. Greubel, Jan 31 2019 *)
LinearRecurrence[{4, -6, 4, -1}, {3, 26, 94, 234}, 40] (* Harvey P. Dale, Feb 20 2022 *)
PROG
(PARI) vector(40, n, n--; (6+19*n+18*n^2+9*n^3)/2) \\ G. C. Greubel, Jan 31 2019
(Magma) [(6+19*n+18*n^2+9*n^3)/2: n in [0..40]]; // G. C. Greubel, Jan 31 2019
(Sage) [(6+19*n+18*n^2+9*n^3)/2 for n in range(40)] # G. C. Greubel, Jan 31 2019
(GAP) List([0..40], n -> (6+19*n+18*n^2+9*n^3)/2); # G. C. Greubel, Jan 31 2019
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Jun 04 2001
EXTENSIONS
More terms from Larry Reeves (larryr(AT)acm.org), Jun 06 2001
STATUS
approved
Fifth column of A046741.
+10
2
5, 56, 263, 815, 1982, 4115, 7646, 13088, 21035, 32162, 47225, 67061, 92588, 124805, 164792, 213710, 272801, 343388, 426875, 524747, 638570, 769991, 920738, 1092620, 1287527, 1507430, 1754381, 2030513, 2338040, 2679257, 3056540
OFFSET
0,1
REFERENCES
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983, (2.3.14).
FORMULA
G.f.: (5 + 33*x^2 + 10*x^3 + 31*x + 2*x^4)/(1-x)^5. Generally, g.f. for k-th column of A046741 is coefficient of y^k in expansion of (1-y)/((1-y-y^2)*(1-y)-(1+y)*x).
a(n) = 5*a(n-1) - 10*a(n-2) + 10*a(n-3) - 5*a(n-4) + a(n-5), where a(0)=5, a(1)=56, a(2)=263, a(3)=815, a(4)=1982. - Harvey P. Dale, Dec 21 2011
From G. C. Greubel, Jan 31 2019: (Start)
a(n) = (40 + 126*n + 165*n^2 + 90*n^3 + 27*n^4)/8.
E.g.f.: (40 + 408*x + 624*x^2 + 252*x^3 + 27*x^4)*exp(x)/8. (End)
MATHEMATICA
LinearRecurrence[{5, -10, 10, -5, 1}, {5, 56, 263, 815, 1982}, 31] (* or *) CoefficientList[Series[(5+33x^2+10x^3+31x+2x^4)/(1-x)^5, {x, 0, 30}], x] (* Harvey P. Dale, Dec 21 2011 *)
Table[(40+126*n+165*n^2+90*n^3+27*n^4)/8, {n, 0, 40}] (* G. C. Greubel, Jan 31 2019 *)
PROG
(PARI) vector(40, n, n--; (40+126*n+165*n^2+90*n^3+27*n^4)/8) \\ G. C. Greubel, Jan 31 2019
(Magma) [(40+126*n+165*n^2+90*n^3+27*n^4)/8: n in [0..40]]; // G. C. Greubel, Jan 31 2019
(Sage) [(40+126*n+165*n^2+90*n^3+27*n^4)/8 for n in range(40)] # G. C. Greubel, Jan 31 2019
(GAP) List([0..40], n -> (40+126*n+165*n^2+90*n^3+27*n^4)/8); # G. C. Greubel, Jan 31 2019
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Jun 04 2001
EXTENSIONS
More terms from Larry Reeves (larryr(AT)acm.org), Jun 06 2001
STATUS
approved
Sixth column of A046741.
+10
2
8, 114, 667, 2504, 7191, 17266, 36482, 70050, 124882, 209834, 335949, 516700, 768233, 1109610, 1563052, 2154182, 2912268, 3870466, 5066063, 6540720, 8340715, 10517186, 13126374, 16229866, 19894838, 24194298, 29207329
OFFSET
0,1
REFERENCES
I. P. Goulden and D. M. Jackson, Combinatorial Enumeration, Wiley, N.Y., 1983, (2.3.14).
FORMULA
G.f.: (x+2)*(2*x^4 + 8*x^3 + 36*x^2 + 31*x + 4)/(1-x)^6. Generally, g.f. for k-th column of A046741 is coefficient of y^k in expansion of (1-y)/((1 - y - y^2)*(1-y) - (1+y)*x).
From G. C. Greubel, Jan 31 2019: (Start)
a(n) = (320 + 1114*n + 1515*n^2 + 1125*n^3 + 405*n^4 + 81*n^5)/40.
E.g.f.: (320 + 4240*x + 8940*x^2 + 5580*x^3 + 1215*x^4 + 81*x^5)*exp(x)/40. (End)
MATHEMATICA
Table[(320+1114*n+1515*n^2+1125*n^3+405*n^4+81*n^5)/40, {n, 0, 40}] (* G. C. Greubel, Jan 31 2019 *)
PROG
(PARI) vector(40, n, n--; (320+1114*n+1515*n^2+1125*n^3+405*n^4 + 81*n^5)/40) \\ G. C. Greubel, Jan 31 2019
(Magma) [(320+1114*n+1515*n^2+1125*n^3+405*n^4+81*n^5)/40: n in [0..40]]; // G. C. Greubel, Jan 31 2019
(Sage) [(320+1114*n+1515*n^2+1125*n^3+405*n^4+81*n^5)/40 for n in range(40)] # G. C. Greubel, Jan 31 2019
(GAP) List([0..40], n -> (320+1114*n+1515*n^2+1125*n^3+405*n^4+81*n^5 )/40); # G. C. Greubel, Jan 31 2019
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Vladeta Jovovic, Jun 04 2001
EXTENSIONS
More terms from Larry Reeves (larryr(AT)acm.org), Jun 06 2001
STATUS
approved
Number of dumbbells in all possible arrangements of dumbbells on a 2 X n rectangular array of compartments.
+10
1
1, 8, 38, 166, 671, 2602, 9792, 36068, 130697, 467556, 1655406, 5811290, 20255279, 70172502, 241839184, 829685064, 2835099649, 9653650752, 32768012102, 110913651342, 374469646511, 1261386990850, 4240037471152, 14225209349036
OFFSET
1,2
LINKS
R. C. Grimson, Exact formulas for 2 x n arrays of dumbbells, J. Math. Phys., 15.2 (1974), 214-216. (Annotated scanned copy)
R. C. Grimson, Exact formulas for 2 x n arrays of dumbbells, J. Math. Phys., 15 (1974), 214-216.
R. B. McQuistan and S. J. Lichtman, Exact recursion relation for 2 x N arrays of dumbbells, J. Math. Phys., 11 (1970), 3095-3099.
FORMULA
a(n) = Sum_{k=0..n} k*A046741(n,k).
G.f.: x*(1 + 2*x - 3*x^2 + 2*x^3)/(1 - 3*x - x^2 + x^3)^2.
EXAMPLE
a(2)=8 because in a 2 X 2 array of compartments, numbered clockwise starting from the NW one, we have 7 (=A030186(2)) possible arrangements of dumbbells: [ ], [14], [23], [12], [34], [14,23] and [12,34] (ij indicates a dumbbell placed in the compartments i and j); these contain altogether 8 dumbbells.
MAPLE
G:=z*(1+2*z-3*z^2+2*z^3)/(1-3*z-z^2+z^3)^2: Gser:=series(G, z=0, 30): seq(coeff(Gser, z, n), n=1..27);
MATHEMATICA
LinearRecurrence[{6, -7, -8, 5, 2, -1}, {1, 8, 38, 166, 671, 2602}, 30] (* G. C. Greubel, Oct 28 2019 *)
PROG
(PARI) my(x='x+O('x^30)); Vec(x*(1+2*x-3*x^2+2*x^3)/(1-3*x-x^2+x^3)^2) \\ G. C. Greubel, Oct 28 2019
(Magma) R<x>:=PowerSeriesRing(Integers(), 30); Coefficients(R!( x*(1+2*x-3*x^2+2*x^3)/(1-3*x-x^2+x^3)^2 )); // G. C. Greubel, Oct 28 2019
(Sage)
def A123518_list(prec):
P.<x> = PowerSeriesRing(ZZ, prec)
return P( x*(1+2*x-3*x^2+2*x^3)/(1-3*x-x^2+x^3)^2 ).list()
a=A123518_list(30); a[1:] # G. C. Greubel, Oct 28 2019
(GAP) a:=[1, 8, 38, 166, 671, 2602];; for n in [7..30] do a[n]:=6*a[n-1] -7*a[n-2]-8*a[n-3]+5*a[n-4]+2*a[n-5]-a[n-6]; od; a; # G. C. Greubel, Oct 28 2019
CROSSREFS
KEYWORD
nonn
AUTHOR
Emeric Deutsch, Oct 16 2006
STATUS
approved

Search completed in 0.016 seconds