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Exact formulas for 2 x n arrays of dumbbells A wg{
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Several exact results are given for the problem of enumerating arrangements of ¢ indistinguishable
dumbbells on a 2 X » array of compartments.

1. INTRODUCTION covered with dumbbells. In many other investigations,

McQuistan and Lichtmanl have investigated the follow- 2PProXimation methods have been utilized.

ing dimer problem which has bearing on several areas In this paper we obtain some explicit formulas for
of physics. Consider a 2 X » rectangular array of com- Al(g, n), some generating functions, another representa-
partments (a lattice space) and ¢ dumbbell-shaped tion of the problem, and another recurrence. Also we
objects, *. Let A(g, n) be the number of ways in shall see how A(g, n) is related to other well-known
which the ¢ dumbbells may be placed in the array such functions.
that the two ends of each dumbbell are in two horizontally

- or vertically adjacent compartments and no two dumb- 2. THE GENERATING FUNCTION AND ITS

bells have ends which share a compartment. For example COEFFICIENTS
example if ¢ = 2 and # = 3, the possibilities are: i

Put =
£) = 2 Alg, mxe.
11T [L7 [ F : . :
1 1 1 ‘l l Then by (1) and a little manipulation,
Soa(x) = (26 + 1)f, .o (x) + xf,,,(x) — 3£, (x)
(n=0). ; (2)
I I For example,
" folx) =1,
fl(x) =1+ &,
" fa(x) =1+ 4x + 2x2
‘ v I I fa(x) =1+ Tx + 11x2 + 343, ‘
which are verified by the above table. Next put ;
©0
G - < , Gx,y) = Z)o Lx)yn, (3)
n=
W . - Using (2) and the first 3 equations under (2) as initial
conditions, we find
In this case A(2, 3) = 11. The following recurrence is G(x,y) = (1 —xy)/(1 — 2xy —y — xy2 + x3y3), (4)
known1:

Thus, (4) gives the ordinary bivariate generating function
Alg,n) = Alg,n— 1) + 2A(g — 1,2 — 1) for A(g, n). Incidentally, with y = 1, (4) becomes (15) of
the McQuistan-Lichtman paper.l Clearly the usual
tAg—1,n—2)—Ag—3,2-3). (1) pethodsof expanding (4) yield fairly complicated

A h i the
Clearly A(g,7) = 0 if ¢ > # so the array of numbers formulas. Of these, one of the more compact is, by

i ial th
A(q, n) is triangular, part of which is given by the follow- multiuonisl theoiem,
epg P P ! ; a+b+c+d
Alg,n) = — 1)d+igc ( )
() i=0  bece3d=qei =1 a,b,c,d )
q 0 1 9 3 4 5 a+2b+c+3d=n+i
n
% 1 A hl't é where (2;5*¢*d) is a multinomial coefficient.
l% \ 1 ?H Put
\{ 1 2 A=1-— Yy,
3 |1 7 11 3 B=— By — 9%
= 98
4 |1 10 29 26 5 G5 9y
5 |1 13 56 94 56 8 so that, by (4),
McQuistan and Lichtman remark that exact solutions G(x,y) = 1 C.3 4 <1 + Zx + Zx ) 3 (5
for problems of this sort (2 or more rows and/or 2 or =%
more dimensions) have been obtained for only very ' : 5
special cases,?3 i.e, a 2-dimensional array completely Since A, B, and C are functions of y only, we may expan
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the right side of (5) to obtain G(x,y) as a power series
in x whose coefficients involve y [compare with (3)].
This may be expressed by

1

q [g/3]

Alg,n)= 25 2 (—1)j29735* (q y 21') <q P 31') <n = & =

k=0 j=0 q9-2

-1 [(g-1)/3] : .
= qz; qE (— 1)iga-35-k-1 <q —2j— 1) (q —3j — 1)
k=0 j=0 J k

219

If we carry through with the rather tedious details of
expanding the right side of (6) in terms of y, thus getting
a power series of x and y, we find that the coefficient of
x9yn is another (as to he expected) complicated formula.
But this time we observe some interesting results, The
coefficient is

)

n—2j—k—1
qg—2j —1 )?

where [x] is the largest integer less than or equal to x.
Thus, we may view A(g, ) as a polynomial in n of degree
q. The coefficient of #7 appears in the first double sum
when j = 0. In this case (j = 0) the first double sum
becomes

; 1
20k (g) Prict s

But the coefficient of #2 in (n — %), is 1 and

£ a() L2
k=0 k/ q! T

I

Therefore, A(g, ») is a polynomial in #z as follows.

39
Alg, n) =(an +Cntl+ .o +Cn+ G, (7N

where the C's depend on ¢ only. If we put AA(g,n) =
A(q‘ 1) — A(g, n), then (7) implies the recurrence

A%A(g, n) = 349,

3. ANOTHER FORMULA AND ASSOCIATED FUNCTIONS

The occupation of 2 X n arrays with dumbbells may be
expressed in terms of an occupancy problem with re-
stricted positions. Consider 3 sets of cells labeled as
follows:

L,n+1 2,n+2 " m2n 1,2 2,3 n—1,n
I it
n+l,n+2 n+2,n+3  2n—1,2n (8)
I

Let the first » cells, I, represent the » vertical pairs of
compartments of the 2 X » array, let the next set, II, of

n — 1 cells represent the » — 1 horizontally adjacent
pairs of compartments in the first row and let the final

n — 1 cells, III, be the horizontally adjacent pairs of com-
partments of the second row. Thus, (8) is equivalent to

n-Ln+2 n+3|n+4 2n

Each of the cells of (8) has 2 “labeling” numbers. There-
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fore, A(q, n) is the number of ways we may distribute g
like objects, one per cell, into (8) such that no 2 cells
containing objects have a labeling number in common.
The advent that 2 occupied cells do share a labeling
number is equivalent to the ends of 2 dumbbells sharing
a compartment, a situation which is forbidden.

Given that j of the g objects are in certain of the cells
of I, there are « and v (¥ + v = q — j) objects that are to
be distributed among the nonforbidden positions of II and
III respectively. For example, if » = 11,5 = 3, and the
checks denote the cells of I occupied by the 3 objects,
then the set of cells I, II, and III are

. 5. SSC . S NS
1 2 3 4 & 6 7T B: 9 10 .11
g Y e ——
gap of 1 gap of 3 gap of 4
(deleting the second labeling number of each cell),
05 - S SR . SN SEU SR LR N
1,2 2,3 3,4 4,5 5,6 6,7 7,8 89 9,10 10,11’
Im x X x X x

(deleting the labeling numbers)

where the x's denote forbidden positions. Clearly II and
III are always identical. If # objects occupy II theng —

j —u = v objects occupy III, We define a gap of m to be
m successive unoccupied cells of I, Thus a gap of m
gives rise tom — 1 permissible cells in IT and III. But
of those m — 1 permissible positions, no 2 adjacent ones
may be occupied. The number of ways that we may place
i objects inm — 1 cells so that no 2 adjacent cells are
occupied is

s}

(A well-known elementary fact asserts that the number
of ways that » plus signs and s minus signs may be
arranged in a row so that no 2 minus signs are adjacent
is (v;1); the above sentence is equivalent to this). If cell
a, of I is occupied and if the next cell in I to the right of
a; which is occupied is a, then the corresponding gap is
a, — a; — 1. Allowing j to range from 0 to ¢ and account-
ing for all possible distribution of the j objects in I we
find

q
Alg,n) = 2 2
j=0 ao<al<---<a.<n»
urv=9-j

) 1), v), (9)

where a, = 0 (the other a's are indices) and where
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)

= flu; ag, @y, ..., ;)

G <a1—ao.—1-i1> (az— al--— 1— z'2> e (10)

il+...+i. —u Zl 22

(aj ey =1 = 1]> (n ==y = z].d)
i; i

Jj J+1

Thus (9) provides A(g, ») with a more harmonious formula

than do some of the earlier equations.

Further insight into the intricate nature of A(g, n)
may be made through a study of f(j,u). Actually, some
properties of f(j,u) are well known. Putting
ai~ai-1_1 (1=1,2,...,5)

’ n—a; (i=j+1)

it suffices to define and examine

ilo...+i7=u 1 -
Then
b .

) r (N, .
2 83byy.aayb) = 1 35 (‘-’, k) z'*, (11)
w0 k=1 im0 i,
But the function

I

uy(2) = 'Z()) < i ) zi (12)
i=
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is familiar, The numbers u,(1) are the Fibonacci
numbers. The polynomial u,(z) has been extensively
studied by many investigators.4 Two expressions for
u,(2) are

up(2) = (— 1)0x0/20, (i/2Vx), *

where i = V— 1 and U, (z) = sin(b + 1)0/sinf(z = cosf);
U,(z) is a Chebyshev polynomial.

#,(2) = ¥ 1a1f{1 + a}b*! — (1 —a)t*t],
a=(1+ 4)V/2, (**)

[Compare (**) with the Binet form of the Fibonacci
numbers. ]

Using (11) and (12) it is easily seen that

°Z°> ke u b b, L
8u;by,...,b )2y 1oy 7 =11 (1 —y, — 2y2)-1,

b)1uer b,=02=0 (3B see B )2 3 3 :'=1( Y —2y7)

In a subsequent paper we shall show how the ideas
presented in the latter part of this paper may be utilized
and extended to enumerate arrangements of ¢ dimers on
anm X n lattice where it is not necessary to assume
that the dimers are numerous enough to completely
cover the lattice.
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