[go: up one dir, main page]

login
Search: a002861 -id:a002861
     Sort: relevance | references | number | modified | created      Format: long | short | data
a(n) = A002861(n) + A000081(n).
+20
1
2, 3, 6, 13, 29, 71, 173, 444, 1148, 3030, 8059, 21715, 58836, 160687, 441083, 1217134, 3372386, 9380948, 26180962, 73292358, 205731862, 578922864, 1632707684, 4614098810, 13064064882, 37052720050, 105257568244, 299452309023, 853094139960, 2433439189419
OFFSET
1,1
CROSSREFS
See A126285.
KEYWORD
nonn
AUTHOR
N. J. A. Sloane, Dec 26 2006
STATUS
approved
Partial sums of A002861.
+20
0
1, 3, 7, 16, 36, 87, 212, 541, 1403, 3714, 9931, 26880, 73230, 200944, 554216, 1535969, 4273508, 11933297, 33425583, 93891713, 264401743, 746269426, 2110694255, 5981068081, 16977958318, 48271041858
OFFSET
1,2
COMMENTS
Partial sums of number of connected functions (or mapping patterns) on n unlabeled points, or number of rings and branches with n edges. The subsequence of primes in this partial sum begins: 3, 7, 9931, 1535969, 5981068081.
FORMULA
a(n) = SUM[i=1..n] A002861(i).
EXAMPLE
a(26) = 1 + 2 + 4 + 9 + 20 + 51 + 125 + 329 + 862 + 2311 + 6217 + 16949 + 46350 + 127714 + 353272 + 981753 + 2737539 + 7659789 + 21492286 + 60466130 + 170510030 + 481867683 + 1364424829 + 3870373826 + 10996890237 + 31293083540.
CROSSREFS
KEYWORD
nonn
AUTHOR
Jonathan Vos Post, Feb 23 2010
STATUS
approved
Number of unlabeled mappings (or mapping patterns) from n points to themselves; number of unlabeled endofunctions.
(Formerly M2671 N1069)
+10
39
1, 1, 3, 7, 19, 47, 130, 343, 951, 2615, 7318, 20491, 57903, 163898, 466199, 1328993, 3799624, 10884049, 31241170, 89814958, 258604642, 745568756, 2152118306, 6218869389, 17988233052, 52078309200, 150899223268, 437571896993, 1269755237948, 3687025544605, 10712682919341, 31143566495273, 90587953109272, 263627037547365
OFFSET
0,3
REFERENCES
F. Bergeron, G. Labelle, and P. Leroux, Combinatorial Species and Tree-Like Structures, Cambridge, 1998, pp. 41, 209.
S. R. Finch, Mathematical Constants, Cambridge, 2003, Section 5.6.6.
R. A. Fisher, Contributions to Mathematical Statistics, Wiley, 1950, 41.401.
F. Harary and E. M. Palmer, Graphical Enumeration, Academic Press, NY, 1973, p. 70, Table 3.4.1.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Alois P. Heinz, Table of n, a(n) for n = 0..1000 (first 501 terms from Christian G. Bower)
A. L. Agore, A. Chirvasitu, and G. Militaru, The set-theoretic Yang-Baxter equation, Kimura semigroups and functional graphs, arXiv:2303.06700 [math.QA], 2023.
N. G. de Bruijn, Enumeration of mapping patterns, J. Combin. Theory, 12 (1972), 14-20.
N. G. de Bruijn and D. A. Klarner, Multisets of aperiodic cycles, SIAM J. Algebraic Discrete Methods 3 (1982), no. 3, 359--368. MR0666861(84i:05008).
Robert L. Davis, The number of structures of finite relations, Proc. Amer. Math. Soc. 4 (1953), 486-495.
Oscar Defrain, Antonio E. Porreca and Ekaterina Timofeeva, Polynomial-delay generation of functional digraphs up to isomorphism, arXiv:2302.13832 [cs.DS], 2023-2024.
Oscar Defrain, Antonio E. Porreca and Ekaterina Timofeeva, Polynomial-delay generation of functional digraphs up to isomorphism, Disc. Appl. Math., vol 357 (2024), pp. 24-33.
Philippe Flajolet and Robert Sedgewick, Analytic Combinatorics, 2009; see page 480
Alexander Heaton, Songpon Sriwongsa, and Jeb F. Willenbring, Branching from the General Linear Group to the Symmetric Group and the Principal Embedding, Algebraic Combinatorics, vol. 4, issue 2 (2021), p. 189-200.
Florent Hivert, Jean-Christophe Novelli, and Jean-Yves Thibon, Commutative combinatorial Hopf algebras, arXiv:math/0605262 [math.CO], 2006.
Sujoy Mukherjee and Petr Vojtěchovský, Minimal representatives of endofunctions, Univ. Denver (2024).
Ronald C. Read, Note on number of functional digraphs, Math. Ann., vol. 143 (1961), pp. 109-111.
Sara Riva, Factorisation of Discrete Dynamical Systems, Ph.D. Thesis, Univ. Côte d'Azur (France 2023).
N. J. A. Sloane, Transforms
FORMULA
Euler transform of A002861.
a(n) ~ c * d^n / sqrt(n), where d = A051491 = 2.9557652856519949747148... (Otter's rooted tree constant), c = 0.442876769782206479836... (for a closed form see "Mathematical Constants", p.308). - Vaclav Kotesovec, Mar 17 2015
EXAMPLE
The a(3) = 7 mappings are:
1->1, 2->2, 3->3
1->1, 2->2, 3->1 (equiv. to 1->1, 2->2, 3->2, or 1->1, 2->1, 3->3, etc.)
1->1, 2->3, 3->2
1->1, 2->1, 3->2
1->1, 2->1, 3->1
1->2, 2->3, 3->1
1->2, 2->1, 3->1
MAPLE
with(combstruct): M[ 2671 ] := [ F, {F=Set(K), K=Cycle(T), T=Prod(Z, Set(T))}, unlabeled ]:
a:=seq(count(M[2671], size=n), n=0..27); # added by W. Edwin Clark, Nov 23 2010
MATHEMATICA
Needs["Combinatorica`"];
nn=30; s[n_, k_]:=s[n, k]=a[n+1-k]+If[n<2 k, 0, s[n-k, k]]; a[1]=1; a[n_]:=a[n]=Sum[a[i] s[n-1, i] i, {i, 1, n-1}]/(n-1); rt=Table[a[i], {i, 1, nn}]; c=Drop[Apply[Plus, Table[Take[CoefficientList[CycleIndex[CyclicGroup[n], s]/.Table[s[j]->Table[Sum[rt[[i]] x^(k*i), {i, 1, nn}], {k, 1, nn}][[j]], {j, 1, nn}], x], nn], {n, 1, 30}]], 1]; CoefficientList[Series[Product[1/(1-x^i)^c[[i]], {i, 1, nn-1}], {x, 0, nn}], x] (* after code given by Robert A. Russell in A000081 *) (* Geoffrey Critzer, Oct 12 2012 *)
max = 40; A[n_] := A[n] = If[n <= 1, n, Sum[DivisorSum[j, #*A[#]&]*A[n-j], {j, 1, n-1}]/(n-1)]; H[t_] := Sum[A[n]*t^n, {n, 0, max}]; F = 1 / Product[1 - H[x^n], {n, 1, max}] + O[x]^max; CoefficientList[F, x] (* Jean-François Alcover, Dec 01 2015, after Joerg Arndt *)
PROG
(PARI) N=66; A=vector(N+1, j, 1);
for (n=1, N, A[n+1] = 1/n * sum(k=1, n, sumdiv(k, d, d * A[d]) * A[n-k+1] ) );
A000081=concat([0], A);
H(t)=subst(Ser(A000081, 't), 't, t);
x='x+O('x^N);
F=1/prod(n=1, N, 1 - H(x^n));
Vec(F)
\\ Joerg Arndt, Jul 10 2014
KEYWORD
nonn,nice,easy
EXTENSIONS
More terms etc. from Paul Zimmermann, Mar 15 1996
Name edited by Keith J. Bauer, Jan 07 2024
STATUS
approved
Number of connected functions on n points with a loop of length 2.
+10
21
0, 1, 1, 3, 6, 16, 37, 96, 239, 622, 1607, 4235, 11185, 29862, 80070, 216176, 586218, 1597578, 4370721, 12003882, 33077327, 91433267, 253454781, 704429853, 1962537755, 5479855546, 15332668869, 42983656210, 120716987723, 339596063606, 956840683968
OFFSET
1,4
COMMENTS
Number of unordered pairs of rooted trees with a total of n nodes.
Equivalently, the number of rooted trees on n+1 nodes where the root has degree 2.
Number of trees on n nodes rooted at an edge. - Washington Bomfim, Jul 06 2012
Guy (1988) calls these tadpole graphs. - N. J. A. Sloane, Nov 04 2014
Number of unicyclic graphs of n nodes with a cycle length of two (in other words, a double edge). - Washington Bomfim, Dec 02 2020
LINKS
R. K. Guy, Letter to N. J. A. Sloane, 1988-04-12 (annotated scanned copy) Includes illustrations for n <= 6.
R. J. Mathar, Topologically distinct sets of non-intersecting circles in the plane, arXiv:1603.00077 [math.CO] (2016), Eq. (75).
FORMULA
G.f.: A(x) = (B(x)^2 + B(x^2))/2 where B(x) is g.f. of A000081.
a(n) = Sum_{k=1..(n-1)/2}( f(k)*f(n-k) ) + [n mod 2 = 0] * ( f(n/2)^2+f(n/2) ) /2, where f(n) = A000081(n). - Washington Bomfim, Jul 06 2012 and Dec 01 2020
a(n) ~ c * d^n / n^(3/2), where d = A051491 = 2.9557652856519949747148..., c = A187770 = 0.43992401257102530404090339... . - Vaclav Kotesovec, Sep 12 2014
2*a(n) = A000106(n) + A000081(n/2), where A(.)=0 if the argument is non-integer. - R. J. Mathar, Jun 04 2020
MAPLE
with(numtheory): b:= proc(n) option remember; local d, j; `if`(n<=1, n, (add(add(d*b(d), d=divisors(j)) *b(n-j), j=1..n-1))/ (n-1)) end: a:= n-> (add(b(i) *b(n-i), i=0..n) +`if`(irem(n, 2)=0, b(n/2), 0))/2: seq(a(n), n=1..50); # Alois P. Heinz, Aug 22 2008, revised Oct 07 2011
# second, re-usable version
A027852 := proc(N::integer)
local dh, Nprime;
dh := 0 ;
for Nprime from 0 to N do
dh := dh+A000081(Nprime)*A000081(N-Nprime) ;
end do:
if type(N, 'even') then
dh := dh+A000081(N/2) ;
end if;
dh/2 ;
end proc: # R. J. Mathar, Mar 06 2017
MATHEMATICA
Needs["Combinatorica`"]; nn = 30; s[n_, k_] := s[n, k] = a[n + 1 - k] + If[n < 2 k, 0, s[n - k, k]]; a[1] = 1; a[n_] := a[n] = Sum[a[i] s[n - 1, i] i, {i, 1, n - 1}]/(n - 1); rt = Table[a[i], {i, 1, nn}]; Take[CoefficientList[CycleIndex[DihedralGroup[2], s] /. Table[s[j] -> Table[Sum[rt[[i]] x^(k*i), {i, 1, nn}], {k, 1, nn}][[j]], {j, 1, nn}], x], {2, nn}] (* Geoffrey Critzer, Oct 12 2012, after code given by Robert A. Russell in A000081 *)
b[n_] := b[n] = If[n <= 1, n, (Sum[Sum[d b[d], {d, Divisors[j]}] b[n-j], {j, 1, n-1}])/(n-1)];
a[n_] := (Sum[b[i] b[n-i], {i, 0, n}] + If[Mod[n, 2] == 0, b[n/2], 0])/2;
Table[a[n], {n, 1, 50}] (* Jean-François Alcover, Oct 30 2018, after Alois P. Heinz *)
PROG
(PARI) seq(max_n)= { my(V = f = vector(max_n), i=1, s); f[1]=1;
for(j=1, max_n - 1, f[j+1] = 1/j * sum(k=1, j, sumdiv(k, d, d * f[d]) * f[j-k+1]));
for(n = 1, max_n, s = sum(k = 1, (n-1)/2, ( f[k] * f[n-k] ));
if(n % 2 == 1, V[i] = s, V[i] = s + (f[n/2]^2 + f[n/2])/2); i++); V };
\\ Washington Bomfim, Jul 06 2012 and Dec 01 2020
CROSSREFS
Column 2 of A033185 (forests of rooted trees), A217781 (unicyclic graphs), A339303 (unoriented linear forests) and A339428 (connected functions).
KEYWORD
nonn
AUTHOR
Christian G. Bower, Dec 14 1997
EXTENSIONS
Edited by Christian G. Bower, Feb 12 2002
STATUS
approved
a(n) = Sum_{m=1..n} T(m,n+1-m), array T as in A048887.
+10
15
0, 1, 2, 4, 7, 13, 23, 42, 76, 139, 255, 471, 873, 1627, 3044, 5718, 10779, 20387, 38673, 73561, 140267, 268065, 513349, 984910, 1892874, 3643569, 7023561, 13557019, 26200181, 50691977, 98182665, 190353369, 369393465, 717457655
OFFSET
0,3
COMMENTS
From Marc LeBrun, Dec 12 2001: (Start)
Define a "numbral arithmetic" by replacing addition with binary bitwise inclusive-OR (so that [3] + [5] = [7] etc.) and multiplication becomes shift-&-OR instead of shift-&-add (so that [3] * [3] = [7] etc.). [d] divides [n] means there exists an [e] with [d] * [e] = [n]. For example the six divisors of [14] are [1], [2], [3], [6], [7] and [14]. Then it appears that this sequence gives the number of proper divisors of [2^n-1]. Conjecture confirmed by Richard C. Schroeppel, Dec 14 2001. (End)
The number of "prime endofunctions" on n points, meaning the cardinality of the subset of the A001372(n) mappings (or mapping patterns) up to isomorphism from n (unlabeled) points to themselves (endofunctions) which are neither the sum of prime endofunctions (i.e., whose disjoint connected components are prime endofunctions) nor the categorical product of prime endofunctions. The n for which a(n) is prime (n such that the number of prime endofunctions on n points is itself prime) are 2, 4, 5, 6, 9, 13, 19, ... - Jonathan Vos Post, Nov 19 2006
For n>=1, compositions p(1)+p(2)+...+p(m)=n such that p(k)<=p(1)+1, see example. - Joerg Arndt, Dec 28 2012
LINKS
D. Applegate, M. LeBrun, N. J. A. Sloane, Dismal Arithmetic, J. Int. Seq. 14 (2011) # 11.9.8.
A. Frosini and S. Rinaldi, On the Sequence A079500 and Its Combinatorial Interpretations, J. Integer Seq., Vol. 9 (2006), Article 06.3.1.
FORMULA
G.f.: Sum_{k>0} x^k*(1-x^k)/(1-2*x+x^(k+1)). - Vladeta Jovovic, Feb 25 2003
a(m) = Sum_{ n=2..m+1 } Fn(m) where Fn is a Fibonacci n-step number (Fibonacci, tetranacci, etc.) indexed as in A000045, A000073, A000078. - Gerald McGarvey, Sep 25 2004
EXAMPLE
From Joerg Arndt, Dec 28 2012: (Start)
There are a(6)=23 compositions p(1)+p(2)+...+p(m)=6 such that p(k)<=p(1)+1:
[ 1] [ 1 1 1 1 1 1 ]
[ 2] [ 1 1 1 1 2 ]
[ 3] [ 1 1 1 2 1 ]
[ 4] [ 1 1 2 1 1 ]
[ 5] [ 1 1 2 2 ]
[ 6] [ 1 2 1 1 1 ]
[ 7] [ 1 2 1 2 ]
[ 8] [ 1 2 2 1 ]
[ 9] [ 2 1 1 1 1 ]
[10] [ 2 1 1 2 ]
[11] [ 2 1 2 1 ]
[12] [ 2 1 3 ]
[13] [ 2 2 1 1 ]
[14] [ 2 2 2 ]
[15] [ 2 3 1 ]
[16] [ 3 1 1 1 ]
[17] [ 3 1 2 ]
[18] [ 3 2 1 ]
[19] [ 3 3 ]
[20] [ 4 1 1 ]
[21] [ 4 2 ]
[22] [ 5 1 ]
[23] [ 6 ]
(End)
PROG
(PARI)
N = 66; x = 'x + O('x^N);
gf = sum(n=0, N, (1-x^n)*x^n/(1-2*x+x^(n+1)) ) + 'c0;
v = Vec(gf); v[1]-='c0; v
/* Joerg Arndt, Apr 14 2013 */
KEYWORD
nonn
STATUS
approved
Triangle read by rows: T(n,k) is the number of connected functions on n points with a loop of length k.
+10
15
1, 1, 1, 2, 1, 1, 4, 3, 1, 1, 9, 6, 3, 1, 1, 20, 16, 9, 4, 1, 1, 48, 37, 23, 11, 4, 1, 1, 115, 96, 62, 35, 14, 5, 1, 1, 286, 239, 169, 97, 46, 18, 5, 1, 1, 719, 622, 451, 282, 145, 63, 21, 6, 1, 1, 1842, 1607, 1217, 792, 440, 206, 80, 25, 6, 1, 1
OFFSET
1,4
LINKS
Andrew Howroyd, Table of n, a(n) for n = 1..1275 (rows 1..50)
FORMULA
G.f. of k-th column: (1/k)*Sum_{d|k} phi(d) * r(x^d)^(k/d) where r(x) is the g.f. of A000081.
EXAMPLE
Triangle begins:
1;
1, 1;
2, 1, 1;
4, 3, 1, 1;
9, 6, 3, 1, 1;
20, 16, 9, 4, 1, 1;
48, 37, 23, 11, 4, 1, 1;
115, 96, 62, 35, 14, 5, 1, 1;
286, 239, 169, 97, 46, 18, 5, 1, 1;
719, 622, 451, 282, 145, 63, 21, 6, 1, 1;
...
PROG
(PARI) \\ TreeGf is A000081 as g.f.
TreeGf(N) = {my(A=vector(N, j, 1)); for (n=1, N-1, A[n+1] = 1/n * sum(k=1, n, sumdiv(k, d, d*A[d]) * A[n-k+1] ) ); x*Ser(A)}
ColSeq(n, k)={my(r=TreeGf(max(0, n+1-k))); Vec(sumdiv(k, d, eulerphi(d)*subst(r + O(x*x^(n\d)), x, x^d)^(k/d))/k, -n)}
M(n, m=n)=Mat(vector(m, k, ColSeq(n, k)~))
{ my(T=M(12)); for(n=1, #T~, print(T[n, 1..n])) }
CROSSREFS
KEYWORD
nonn,tabl
AUTHOR
Andrew Howroyd, Dec 03 2020
STATUS
approved
Number of partial mappings (or mapping patterns) from n points to themselves; number of partial endofunctions.
+10
6
1, 2, 6, 16, 45, 121, 338, 929, 2598, 7261, 20453, 57738, 163799, 465778, 1328697, 3798473, 10883314, 31237935, 89812975, 258595806, 745563123, 2152093734, 6218854285, 17988163439, 52078267380, 150899028305, 437571778542, 1269754686051, 3687025215421
OFFSET
0,2
COMMENTS
If an endofunction is partial, then some points may be unmapped (or mapped to "undefined").
The labeled version is left-shifted A000169. - Franklin T. Adams-Watters, Jan 16 2007
LINKS
R. I. McLachlan, K. Modin, H. Munthe-Kaas, and O. Verdier, What are Butcher series, really? The story of rooted trees and numerical methods for evolution equations, arXiv preprint arXiv:1512.00906 [math.NA], 2015-2017.
N. J. A. Sloane, Transforms
FORMULA
Euler transform of A002861 + A000081 = [1, 2, 4, 9, 20, 51, 125, 329, 862, 2311, ... ] + [ 1, 1, 2, 4, 9, 20, 48, 115, 286, 719, ...] = A124682.
Convolution of left-shifted A000081 with A001372. - Franklin T. Adams-Watters, Jan 16 2007
a(n) ~ c * d^n / sqrt(n), where d = 2.95576528565... is the Otter's rooted tree constant (see A051491) and c = 1.309039781943936352117502717... - Vaclav Kotesovec, Mar 29 2014
MATHEMATICA
nmax = 28;
a81[n_] := a81[n] = If[n<2, n, Sum[Sum[d*a81[d], {d, Divisors[j]}]*a81[n-j ], {j, 1, n-1}]/(n-1)];
A[n_] := A[n] = If[n<2, n, Sum[DivisorSum[j, #*A[#]&]*A[n-j], {j, 1, n-1} ]/(n-1)];
H[t_] := Sum[A[n]*t^n, {n, 0, nmax+2}];
F = 1/Product[1 - H[x^n], {n, 1, nmax+2}] + O[x]^(nmax+2);
A1372 = CoefficientList[F, x];
a[n_] := Sum[a81[k] * A1372[[n-k+2]], {k, 0, n+1}];
Table[a[n], {n, 0, nmax}] (* Jean-François Alcover, Aug 18 2018, after Franklin T. Adams-Watters *)
PROG
(Sage)
Pol.<t> = InfinitePolynomialRing(QQ)
@cached_function
def Z(n):
if n==0: return Pol.one()
return sum(t[k]*Z(n-k) for k in (1..n))/n
def pmagmas(n, k=1): # number of partial k-magmas on a set of n elements up to isomorphism
P = Z(n)
q = 0
coeffs = P.coefficients()
count = 0
for m in P.monomials():
p = 1
V = m.variables()
T = cartesian_product(k*[V])
for t in T:
r = [Pol.varname_key(str(u))[1] for u in t]
j = [m.degree(u) for u in t]
D = 1
lcm_r = lcm(r)
for d in divisors(lcm_r):
try: D += d*m.degrees()[-d-1]
except: break
p *= D^(prod(r)/lcm_r*prod(j))
q += coeffs[count]*p
count += 1
return q
# Philip Turecek, Nov 27 2023
CROSSREFS
KEYWORD
nonn
AUTHOR
Christian G. Bower, Dec 25 2006 based on a suggestion from Jonathan Vos Post
STATUS
approved
Number of nonisomorphic connected functions with no fixed points, or proper rings with n edges.
(Formerly M1403 N0547)
+10
5
0, 1, 2, 5, 11, 31, 77, 214, 576, 1592, 4375, 12183, 33864, 94741, 265461, 746372, 2102692, 5938630, 16803610, 47639902, 135288198, 384812502, 1096141974, 3126648842, 8929715592, 25533447030, 73090099586, 209438176485, 600721031344, 1724585494225
OFFSET
1,3
REFERENCES
R. A. Fisher, Contributions to Mathematical Statistics, Wiley, 1950, 41.399.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
R. K. Guy, Letter to N. J. A. Sloane, 1988-04-12 (annotated scanned copy) Includes illustrations for n <= 6.
MATHEMATICA
Needs["Combinatorica`"]; nn=30; s[n_, k_]:=s[n, k]=a[n+1-k]+If[n<2 k, 0, s[n-k, k]]; a[1]=1; a[n_]:=a[n]=Sum[a[i] s[n-1, i] i, {i, 1, n-1}]/(n-1); rt=Table[a[i], {i, 1, nn}]; cfd=Drop[Apply[Plus, Table[Take[CoefficientList[CycleIndex[CyclicGroup[n], s]/.Table[s[j]->Table[Sum[rt[[i]] x^(k*i), {i, 1, nn}], {k, 1, nn}][[j]], {j, 1, nn}], x], nn], {n, 2, 30}]], 1] (* Geoffrey Critzer, Oct 14 2012, after code given by Robert A. Russell in A000081 *)
CROSSREFS
(A002861) minus (A000081).
KEYWORD
nonn,nice
EXTENSIONS
More terms and better description from Christian G. Bower
STATUS
approved
Number of functional patterns on n elements; or digraphs with maximum outdegree 1, n arrows and every point connected to an arrow.
+10
5
1, 2, 7, 20, 61, 174, 514, 1478, 4303, 12437, 36084, 104494, 303167, 879283, 2552803, 7413583, 21544347, 62635823, 182199853, 530228946, 1543761513, 4496523995, 13102414665, 38193626823, 111375529695, 324891970936, 948051861938, 2767336312386, 8080206646244
OFFSET
0,2
COMMENTS
A001372 counts functional patterns from a set with n elements to itself; A000041 (partition function) counts functional patterns from a set with n elements to a disjoint set; this is the general case where the range may overlap the domain but may also include other values.
LINKS
FORMULA
Euler transform of A002861(n) + A000081(n+1).
a(n) ~ c * d^n / sqrt(n), where d = A051491 = 2.95576528565199497471481752412..., c = 3.435908969217935496995961718... . - Vaclav Kotesovec, Sep 10 2014
EXAMPLE
For n=2 there are the following 7 digraphs:
o-+.o-+ o->o-+ o->o o-+.o->o o->o->o o->o o->o
^.|.^.| ...^.| ^..| ^.|..... ....... ...^ ....
+-+.+-+ ...+-+ +--+ +-+..... ....... o--+ o->o
MATHEMATICA
nmax = 750;
A002861 = Cases[Import["https://oeis.org/A002861/b002861.txt", "Table"], {_, _}][[;; nmax + 2, 2]];
A000081 = Cases[Import["https://oeis.org/A000081/b000081.txt", "Table"], {_, _}][[;; nmax + 2, 2]];
etr[p_] := Module[{b}, b[n_] := b[n] = If[n == 0, 1, Sum[Sum[d*p[d], {d, Divisors[j]}]*b[n - j], {j, 1, n}]/n]; b];
b[n_] := A002861[[n]] + A000081[[n + 2]];
a = etr[b];
a[0] = 1;
a /@ Range[0, nmax](* Jean-François Alcover, Mar 13 2020 *)
CROSSREFS
KEYWORD
easy,nice,nonn
AUTHOR
STATUS
approved
Number of connected functions of n points with no symmetries.
+10
3
1, 1, 2, 4, 9, 18, 42, 91, 208, 470, 1089, 2509, 5869, 13730, 32371, 76510, 181708, 432635, 1033656, 2475384, 5943395, 14299532, 34475030, 83263872, 201441431, 488092897, 1184353643, 2877611984, 7000359244, 17049288304, 41568056484, 101449503960, 247828380511
OFFSET
1,3
LINKS
Alois P. Heinz, Table of n, a(n) for n = 1..2503 (first 500 terms from Andrew Howroyd)
C. G. Bower, Transforms (2)
FORMULA
"CHK" (necklace, identity, unlabeled) transform of A004111.
MAPLE
g:= proc(n) option remember; `if`(n<2, n, add(g(n-k)*add(g(d)*d*
(-1)^(k/d+1), d=numtheory[divisors](k)), k=1..n-1)/(n-1))
end:
b:= proc(n, i) option remember; `if`(n=0, 1, `if`(i<1, 0,
add(binomial(j-1-a(i), j)*b(n-i*j, i-1), j=0..n/i)))
end:
a:= n-> g(n)+b(n, n-1):
seq(a(n), n=1..40); # Alois P. Heinz, May 19 2022
MATHEMATICA
g[n_] := g[n] = If[n < 2, n, Sum[g[n - k]*Sum[g[d]*d*(-1)^(k/d + 1), {d, Divisors[k]}], {k, 1, n - 1}]/(n - 1)];
b[n_, i_] := b[n, i] = If[n == 0, 1, If[i < 1, 0, Sum[Binomial[j - 1 - a[i], j]*b[n - i*j, i - 1], {j, 0, n/i}]]];
a[n_] := g[n] + b[n, n - 1];
Table[a[n], {n, 1, 40}] (* Jean-François Alcover, May 20 2022, after Alois P. Heinz *)
PROG
(PARI) \\ here IdTreeGf is g.f. of A004111.
IdTreeGf(N)={my(A=vector(N, j, 1)); for (n=1, N-1, A[n+1] = 1/n * sum(k=1, n, sumdiv(k, d, (-1)^(k/d+1) * d*A[d]) * A[n-k+1] ) ); x*Ser(A)}
CHK(p, n)={sum(d=1, n, moebius(d)/d*log(subst(1/(1+O(x*x^(n\d))-p), x, x^d)))}
seq(n)={Vec(CHK(IdTreeGf(n), n))} \\ Andrew Howroyd, Aug 31 2018
CROSSREFS
KEYWORD
nonn
STATUS
approved

Search completed in 0.015 seconds