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Abstract. We present a simple and efficient algorithm for finding the lexicographically
minimal representative in a given conjugacy class of the action of the symmetric group on
endofunctions.

1. Introduction

An endofunction on X is a function t : X → X. All endofunctions on X form the full
transformation monoid TX under composition. The symmetric group SX acts on TX by
conjugation t 7→ sts−1. The orbits of this action will be called the SX-conjugacy classes of
TX , or just conjugacy classes of TX .
Endofunctions on X can be identified with functional digraphs on the vertex set X. A

digraph G = (X,E) is a functional digraph if for every x ∈ X there is a unique y ∈ X
such that (x, y) ∈ E. Given an endofunction t : X → X, we obtain a functional digraph
G(t) = (X,E) by setting E = {(x, t(x)) : x ∈ X}. Conversely, given a functional digraph
G = (X,E), we obtain an endofunction tG ∈ TX by setting tG(x) = y if and only if (x, y) ∈ E.
The two constructions are inverse to each other.

Furthermore, if t ∈ TX , s ∈ SX and t(x) = y, then sts−1(s(x)) = st(x) = s(y). Hence the
functional digraph G(sts−1) is isomorphic to G(t) and it is obtained from G(t) by renaming
every vertex x to s(x). Conversely, if G = (X,E) and H = (X,F ) are isomorphic functional
digraphs on X and if s ∈ SX is an isomorphism G → H then (s(x), s(y)) ∈ F if and only
if (x, y) ∈ E, so tH(s(x)) = s(y) if and only if tG(x) = y, that is, tH = stGs

−1. Classi-
fying endofunctions up to conjugacy is therefore equivalent to classifying (vertex-labeled)
functional digraphs up to isomorphism.

From now on let X = Xn = {1, . . . , n} be a fixed finite set, TX = Tn and SX = Sn. We
will identify t ∈ Tn with the tuple [t(1), t(2), . . . , t(n)] and order Tn lexicographically. If C is
an Sn-conjugacy class of Tn then t ∈ C is the minimal representative of C if t ≤ s for every
s ∈ C.

In this note we present a simple and efficient algorithm for finding the minimal represen-
tative of the Sn-conjugacy class of Tn containing a given endofunction t. The complexity of
the algorithm is O(n2).
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We can transfer the linear order on endofunctions to digraphs by letting G ≤ H if and
only if tG ≤ tH . When s ∈ Tn is given, we will often search for the minimal representative t
in the conjugacy class of s by suitably relabeling the vertices of the functional digraph G(s).
A subset U ⊆ X of a digraph G = (X,E) is (weakly) connected if for every x, y ∈ U there

is a sequence x = z0, z1, . . . , zm = y of vertices of U such that for every 0 ≤ i < m we have
either (zi, zi+1) ∈ E or (zi+1, zi) ∈ E. A connected component of G = (X,E) is a maximal
connected subset of X.

It is easy to see that every connected component U of a functional digraph G contains a
unique (directed) cycle, possibly degenerated into a loop. We will denote the unique cycle
of U by C(U) and its length by c(U). Upon removing the edges of C(U), U becomes a union
of disjoint directed trees rooted in (or, more precisely, with the sink located in) C(U). See
the examples in Subsection 2.4 for a typical connected component of a functional digraph.

Finally, if G = (X,E) is a digraph and x ∈ X, we let

N(x) = {y ∈ X : (y, x) ∈ E}

be the set of all in-neighbors of x. For a functional digraph G(t), we of course have N(x) =
t−1(x), the preimage of x under t.

1.1. Related work. Suppose that a group H acts on a set A and denote by aH the orbit
of a ∈ A under the action of H. A canonical representative of a ∈ A is an element ca ∈ aH

such that for every a, b ∈ A we have ca = cb if and only if aH = bH . Suppose further that ≤
is a total order on A. The minimal representative of a ∈ A is the element ma ∈ aH such that
ma ≤ b for all b ∈ aH . Note that the minimal representative is a canonical representative.
Generally speaking, finding minimal representatives appears to be more difficult than finding
canonical representatives.

Linton [14] introduced a general algorithm for finding the minimal representative of the
action of a permutation group H on k-element subsets of a set A; the algorithm has been
implemented in [18]. Jefferson et al. [10, 11] presented several algorithms for finding the
minimal representative in the same setting, and demonstrated on several examples that
the running time of their algorithm is better than the running time of Linton’s algorithm,
sometimes by an order of magnitude. Linton’s algorithm runs in time that is at least linear in
|A|, and it is therefore not practical for the problem considered in this paper because we have
A = Tn and hence |A| = nn. Nevertheless we will use the state-of-the-art implementation
in [11] for a running time comparison with our algorithm and to check our algorithm for
correctness.

Since endofunctions are in one-to-one correspondence with functional digraphs, our prob-
lem can be solved by graph algorithms. It is known that canonical representatives (or, better,
canonical labels) of trees and planar graphs can be calculated in linear time [4]. For trees,
the folklore algorithm is often attributed to Edmonds (see [3] and [1, Example 3.2]). Our
tree labeling algorithm of §2.3 is similar to Edmonds’s algorithm in that it labels rooted trees
based on degrees of vertices, but it follows a different labeling procedure since our goal is to
find the minimal representative, not just a canonical representative suitable for solving the
isomorphism problem. State-of-the-art canonical labeling algorithms for graphs can be found
in [13, 15, 16] but none of these tools calculates minimal representatives. It is proved in [5]
that the problem of finding the minimal incidence matrix of a graph (under the action of per-
muting rows and columns of the incidence matrix) is NP-complete. Quoting from [5]: “We
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trust that the above demonstration will discourage finding lex-leading-incidence-matrices as
an approach to finding canonical forms for graphs and, thereby, to graph isomorphism.”

Our motivation for this work is the problem of finding the minimal representative of
a groupoid in its isomorphism class. A total ordering on groupoids defined on a totally
ordered set X is usually obtained by concatenating the rows of the multiplication table and
ordering the resulting vectors lexicographically. But we can consider a different ordering
of cells in the multiplication tables, say with the diagonal cells being considered first. The
diagonal of a groupoid (X, ·) can be seen as an endofunction on X. By finding the minimal
representative of the corresponding endofunction, together with a permutation that certifies
how the minimal representative has been obtained, one can quickly find an isomorphic copy
of (X, ·) with the smallest possible diagonal, an important step toward finding the minimal
representative in the isomorphism class of (X, ·).

The diagonals of groupoids were exploited by Ježek [12] while enumerating small left
distributive groupoids up to isomorphism. In effect, Ježek performed the enumeration one
conjugacy class representative of an endofunction at a time. There does not seem to be an
efficient algorithm for generating representatives of all Sn-conjugacy classes of endofunctions
on Xn = {1, . . . , n}. Such representatives are also known as mapping types or mapping
patterns. Let an be the number of mapping types on Xn, the first ten values being a1 = 1,
a2 = 3, a3 = 7, a4 = 19, a5 = 47, a6 = 130, a7 = 343, a8 = 951, a9 = 2615 and a10 = 7318.
A formula for an was first derived by Davis [6, Theorem 6]. See also [8, p. 18], where an
has been explicitly calculated for n ≤ 15, and the OEIS sequence [17, A001372] for an with
n ≤ 1000.

2. The algorithm

The algorithm is developed in §2.1–§2.3 together with a proof of correctness. Examples
are presented in §2.4. A summary of the algorithm and its running time can be found in
§2.5.

Let t ∈ Tn be a minimal representative (that is, the minimal representative of some
Sn-conjugacy class of Tn). Let U1, . . . , Um be the connected components of the associated
digraph G(t).

In §2.1 we show that if U1 = U contains 1, then C(U) is the cycle (1, 2, . . . , c(U)). We do
not yet determine which vertex of C(U) is 1, but we show that U = {1, . . . , |U |}. It follows
that the tuple t = [t(1), . . . , t(n)] is a concatenation of the tuples t(U1), t(U2), . . . , t(Um) for
some ordering of the connected components.

In §2.2 we show how the components of G(t) must be ordered and hence reduce the
problem to the connected case, which we handle in §2.3.
Suppose that G(t) is connected. Upon removing the edges of the unique cycle C(X) of

G(t), we obtain disjoint directed trees rooted in C(X). We can decompose X as a disjoint
union L0 ∪ · · · ∪Lk, where Li consists of the vertices of x ∈ X at distance i from C(X). Let
ℓi = |Li|. We already know that L0 = C(X) = {1, . . . , ℓ0} and it easily follows that

Li = {
∑
0≤j<i

ℓj + 1, . . . ,
∑
0≤j≤i

ℓj},

that is, the level sets Li consist of consecutively labeled vertices and the labels increase with
the distance from the cycle. To determine the fine structure of the level sets Li, we enhance

3



the trees with certain structural labels, essentially keeping track of the ordered sequence
of indegrees in a recursive fashion. The minimal representative is then determined by the
structural labels and by the position of 1 on the cycle. To locate 1 on the cycle, we can try
all possibilities or we can once again take advantage of the structural labels.

2.1. The cycle of a connected component.

Lemma 2.1. Let t ∈ Tn be a minimal representative and let U be the connected component of
G(t) containing 1. Then 1 ∈ C(U) and the directed path from 1 is the cycle (1, 2, . . . , c(U)).

Proof. Consider the vertex 1. The path p consisting of 1, t(1), t2(1), etc, eventually cycles
back to itself. Let 0 ≤ j < k be the smallest values such that tj(1) = tk(1), so that the cycle
of p has length k − j; see Figure 1.

1 t(1) tj−1(1) tj(1)

tj+1(1)tk−1(1)

Figure 1. The path starting at 1.

Consider the edge (1, t(1)), the unique edge of G(t) with source 1. If t(1) = 1, we are
done, so suppose that t(1) > 1. If t(1) > 2 then conjugating t by the transposition (t(1), 2)
yields a smaller representative. Hence t(1) = 2. Similarly, ti(1) = i + 1 for every i < k.
Hence t = [t(1), t(2), . . . , t(n)] = [2, 3, . . . , k, t(k), . . . , t(n)].
If t(k) = 1 then 1 ∈ C(U) and we are done. We can therefore assume that t(k) = tk(1) =

tj(1) = j + 1 > 1. Conjugating by any permutation s such that s(j + 1) = 1, s(j + 2) = 2,
. . . , s(k) = s(j + (k− j)) = k− j then yields a smaller representative [2, 3, . . . , k− j, 1, . . . ],
a contradiction. □

Hence every minimal representative t = [t(1), t(2), . . . ] must start with [2, 3, . . . , c(U), 1]
for some connected component U of G(t), where we understand [2, 3, . . . , c(U)] to be empty
if c(U) = 1. In terms of abstract functional digraphs, we have so far labeled the cycle of
some connected component U , but it is not clear yet which connected component should be
chosen and which of the c(U) possible cyclic labelings of C(U) should be used.
Let us introduce notation for some subsets of a connected component U of a functional

digraph. For k ≥ 0, let Lk consist of all x ∈ U at distance k from C(U). Note that L0 = C(U)
and U =

⋃
k<∞ Lk. For x ∈ U , let

M(x) = N(x) \ C(U)

be the set of all in-neighbors of x not on the cycle. Note that Lk+1 =
⋃

x∈Lk
M(x), and

M(x) = N(x) whenever x ̸∈ C(U). (To illustrate these sets, in Figure 3, we have L0 =
{1, 2, 3}, L1 = {4, 5, 6, 7}, M(1) = {4, 5}, and so on.)
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Lemma 2.2. Let t ∈ Tn be a minimal representative and let U be the connected component
of G(t) containing 1. Then:

(i) M(x) is an interval for every x ∈ U ,
(ii) Lk is an interval for every k,
(iii) t(i) < i for every i ∈ U \ C(U),
(iv) U = {1, . . . , |U |}.

Proof. Let c = c(U) and dx = |M(x)|. By Lemma 2.1, we have L0 = C(U) = {1, . . . , c}.
If U = L0, we are done, so suppose that U ̸= L0. Then there is a least i ∈ L0 such that
M(i) ̸= ∅. Since t is minimal, we must have M(i) = {c+1, . . . , c+di}. Next let i < j ∈ L0 be
least such that M(j) ̸= ∅. If such j exists, we must have M(j) = {c+di+1, . . . , c+di+dj},
and so on. This shows that M(x) is an interval for every x ∈ L0 and that L1 =

⋃
x∈L0

M(x)
is an interval. If U = L0 ∪ L1, we are done, otherwise we proceed to the least i ∈ L1 such
that M(i) ̸= ∅, and so on. □

For any two subsets U = {u1, . . . , uk}, V = {v1, . . . , vk} of X, if tU is an endofunction on
U , let tU;V be the endofunction on V defined by tU;V (vi) = vj if and only if tU(ui) = uj.

Note that if tU is a minimal representative on U (under the action of SU) then tU;V is
a minimal representative on V (under the action of SV ), and vice versa. We will use this
formal shift in the proof of the following result and in §2.2.

Corollary 2.3. Let t ∈ Tn be a minimal representative and let U1, . . . , Um be the connected
components of G(t). For 1 ≤ i ≤ m, let tUi

be the restriction of t to Ui. Then t, seen as
the tuple [t(1), . . . , t(n)], is the concatenation of the tuples tUπ(1)

, tUπ(2)
, . . . , tUπ(m)

, for some
π ∈ Sm. Moreover, every Ui is an interval and maxUπ(i) + 1 = minUπ(i+1).

Proof. We proceed by induction on the number m of connected components of X. Suppose
that 1 ∈ U1, without loss of generality. If m = 1, we are done. Suppose that m > 1.
Certainly, t restricts to an endofunction on X \ U1 which has fewer connected components.
Moreover, U1 = {1, . . . , |U1|} by Lemma 2.2 and hence X \U1 = {|U1|+1, . . . , |X|}. Modulo
a formal shift of vertex labels, the induction assumption implies that tX\U1 is a concatenation
of tUπ(2)

, . . . , tUπ(m)
for some π ∈ S{2,...,m}, as well as the rest of the claim. □

2.2. Ordering the connected components. Let t ∈ Tn be a minimal representative and
let U1, . . . , Um be the connected components of G(t). By Corollary 2.3, there is π ∈ Sm such
that t is the concatenation of the restrictions tUπ(1)

, tUπ(2)
, . . . , tUπ(m)

. Moreover, Uπ(1), . . . ,
Uπ(m) are consecutive intervals. We will now determine π.
For each i, tUi;{1,...,|Ui|} is a minimal representative on {1, . . . , |Ui|}. We can therefore

transfer the endofunctions on the connected components Ui to the disjoint union

T≤n =
⋃

1≤k≤n

Tk

and compare them there. We will need a suitable order on T≤n.
Consider a modification ⪯ of the lexicographic order in which words are ordered as usual

except that when a word is a prefix of another word then the longer word is listed first. For
instance, “antelope” comes before “ant”. For obvious reasons, we will call ⪯ the spelling bee
dictionary order.

Let us equip T≤n with the spelling bee dictionary order ⪯. Note that ⪯ restricted to Tk

gives the usual lexicographic order on Tk since all “words” in Tk have the same length.
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Lemma 2.4. Let t ∈ Tn be a minimal representative. Let U , V be connected components of
G(t) and let tU , tV be the restrictions of t to U and V , respectively. Let sU = tU;{1,...,|U |}
and sV = tV;{1,...,|V |}. If sU is a prefix of sV and |V | > |U | then sV (|U |+ 1) < |U |+ 1.

Proof. Suppose that sU is a prefix of sV and |V | > |U |. Then the restriction of sV to
{1, . . . , |U |} coincides with sU and therefore the cycles of sU and sV also coincide. By
Lemma 2.2(iii), sV (|U |+ 1) < |U |+ 1. □

Lemma 2.5. Let t ∈ Tn be a minimal representative and let U1, . . . , Um be the con-
nected components of G(t) ordered so that t is the concatenation of tU1 , . . . , tUm. Let si =
tUi;{1,...,|Ui|}. Then s1 ⪯ si for every 1 ≤ i ≤ m.

Proof. There is nothing to prove when m = 1, so we can assume that m > 1. Suppose that
si ≺ s1 for some i > 1. Let k = min{|U1|, |Ui|}. If there is j ≤ k such that si and s1 agree
on {1, . . . , j − 1} and si(j) < s1(j), then by renaming the elements of Ui to {1, . . . , |Ui|}
and listing Ui first, we find a smaller representative than t, a contradiction. We can thus
assume that si(j) = s1(j) for all j ≤ k, s1 is a proper prefix of si and k = |U1| < |Ui|. By
Lemma 2.4, si(k + 1) < k + 1. Now, tU2 is defined on U2 = {k + 1, . . . , k + |U2|} and hence
tU2(k + 1) ≥ k + 1. Therefore, if we use Ui first and relabel suitably, we obtain a smaller
representative than t, a contradiction. □

Combining Corollary 2.3 and Lemma 2.5, we have:

Corollary 2.6. Let t ∈ Tn be a minimal representative and let U1, . . . , Um be the con-
nected components of G(t) ordered so that t is the concatenation of tU1 , . . . , tUm. Let si =
tUi;{1,...,|Ui|}. Then s1 ⪯ s2 ⪯ · · · ⪯ sm.

2.3. The connected case. Suppose that t is a minimal representative and G(t) is con-
nected. Lemma 2.2 gives some restrictions on the vertices of G(t). We will now establish
additional restrictions.

For any directed tree in which the sink is the root, define the structural labels σ(v) =
[σ(v)j : j ≥ 0] of its vertices and the structural labels σ(e) of its edges recursively as follows.
If N(v) = ∅ (so v is a leaf), let σ(v) = [σ(v)0] = [0], with the convention that σ(v)j is empty
for j > 0. If N(v) = {v1, . . . , vd} ̸= ∅, suppose that v1, . . . , vd are ordered lexicographically
according to their structural labels so that σ(v1) ≥ σ(v2) ≥ · · · ≥ σ(vd). Then σ(v) =
[d, σ0, σ1, . . . ], where σj is the concatenation of σ(v1)j, . . . , σ(vd)j. Furthermore, label the
edge (vi, v) by σ(vi, v) = j if σ(vi) is the jth largest entry in {σ(v1), . . . , σ(vd)}. Note that a
tie σ(vi, v) = σ(vk, v) occurs whenever σ(vi) = σ(vk). See Example 2.8, where the structural
labels have been calculated for all trees rooted in the cycle.

The meaning of the structural labels is as follows. The first entry σ(v)0 of σ(v) is the
indegree of v. The second entry σ(v)1 is the tuple of the indegrees of the vertices in N(v) =
{v1, . . . , vd}, ordered first according to their indegrees, and then recursively. Note that
if σ(v) = σ(w) then the subtrees rooted at v and w, respectively, are isomorphic. The
edge labels σ(vi, v) make it clear how the vertices of N(v) were ordered at v, which is not
necessarily apparent from the vertex label at v alone. For instance, the structural vertex
label [2, 31, 0001, 0] in Example 2.8 shows that the vertex has indegree 2, its predecessors
have indegrees 3 and 1, and so on, while the structural edge labels at the vertex specify that
the predecessor with indegree 3 should be considered first.
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Lemma 2.7. Let t ∈ Tn be a minimal representative with G(t) connected. Then for every
x ∈ X, the vertices of the interval M(x) are ordered in an increasing order according to the
structural edge labels on the edges (y, x), y ∈ M(x), modulo the ties.

Proof. Let d = |Mx| and let M(x) = {a, . . . , a + d− 1}, cf. Lemma 2.2. Since t is minimal,
a must have maximal indegree among the vertices of M(x). In case of a tie, the ordered
sequence of indegrees of the vertices in M(a) must be maximal, and so on. This is precisely
what the structural labels keep track off. □

Note that the minimal representative t is uniquely determined by the structural labels in
G(t) and by the position of 1 in the cycle of G(t). Indeed, once 1 is placed, the labels on the
cycle are determined by Lemma 2.1. The remaining vertices are then labeled consecutively
one set M(x) at a time, always using the smallest labeled vertex x for which M(x) is
nonempty and not yet labeled. The vertices of M(x) are labeled as in Lemma 2.7. The ties
among structural edge labels can be resolved in any way. The resulting vertex labelings of the
graph G(t) will be distinct, but all such labeled graphs are isomorphic and the corresponding
endofunctions are the same. For instance, in Figure 3, we can interchange the labels of
vertices 10 and 11, or we can interchange the labels of the two subtrees rooted at 6.

We can therefore determine t by considering all possible placements of 1 in the cycle
and by keeping the minimal resulting endofunction. Alternatively, the position of 1 can
be determined from the structural labels as follows. Let (v1, . . . , vc) be the cycle and let
σ(vi) = [σ(vi)0, σ(vi)1, . . . ] be the corresponding structural vertex labels. For every starting
position 1 ≤ i ≤ c let s(vi) be the concatenation of the sequences s(vi)0, s(vi)1, . . . , where
s(vi)j = [σ(vi)j, σ(vi+1)j, . . . , σ(vc)j, σ(v1)j, . . . , σ(vi−1)j]. (Thus s(vi) is obtained by starting
at vi and going around the cycle repeatedly, collecting one entry of the structural vertex
labels at a time.) Then 1 must be located at a vertex vi with the lexicographically largest
sequence s(vi).

2.4. Examples. In all figures below, we have removed brackets around structural vertex
labels to improve legibility and we added asterisks on structural edge labels to indicate a tie.

Example 2.8. Figures 2 and 3 show how the structural labels of a connected component
can be used to find the minimal representative of an endofunction. The missing structural
vertex labels are a = [2, 22, 3100, 0001, 0] and b = [2, 22, 2200, 0000]. Starting at a and going
around the cycle once results in the sequence [2, 2, 0] of indegrees (not counting edges in the
cycle), while starting at b (resp. at the third vertex of the cycle) produces the sequence
[2, 0, 2] (resp. [0, 2, 2]). It is therefore clear in this case after just one round that 1 must be
positioned at a. One of the minimal graph representatives of the component (giving rise to
the unique minimal representative of the corresponding endofunction) is depicted in Figure
3. It is obtained by first labeling the cycle (1, 2, 3), then the set M(1) = {4, 5} according to
the structural edge labels, then the set M(2), and so on.

Example 2.9. Consider the example in Figure 4. The minimal representative [2, 3, 1, 1, 2, 5]
is obtained by placing 1 at [1, 0]. (Placing 1 at [1, 1, 0] results in the larger endofunction
[2, 3, 1, 1, 3, 4], and placing 1 at [0] yields the even larger [2, 3, 1, 2, 3, 5].) Hence 1 certainly
does not have to occur at the cycle vertex with the largest structural label. Even if we con-
sider the sequences [1, 0, 1, 1, 0, 0], [1, 1, 0, 0, 1, 0] and [0, 1, 0, 1, 1, 0] obtained by going around
the cycle from different starting points and simply concatenating the structural vertex labels,
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a b

0

2,31,0001,0

2,00

2,22,0000

2,00

3,000
1,1,0

1,0

0

0

0

2,00
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0

0

0
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0
0 0
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1
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1* 1*
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1
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1* 1*
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1* 1*
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1*

1*

Figure 2. Structural labels in a connected component.
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Figure 3. A corresponding minimal digraph representative, giving rise to the
minimal endofunction representative.
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1, 0 1, 1, 0

0

0

1,0

0
1 1 1

Figure 4. Placing vertex 1.

we observe that 1 does not have to occur at the cycle vertex with the largest sequence. But
constructing the sequences by going around the cycle several times and collecting only one
entry of each structural vertex label at a time (as in §2.3) yields [1, 1, 0, 0, 1, 0], [1, 0, 1, 1, 0, 0]
and [0, 1, 1, 0, 1, 0], respectively, correctly determining the placement of 1.

0 0 0
1

Figure 5. Ordering connected components.

Example 2.10. Figure 5 shows why the spelling bee dictionary ordering arises while com-
paring connected components. The left connected component results in the endofunction
[1], while the right connected component results in the endofunction [1, 1]. When the left
component is listed first, we obtain the endofunction [1, 2, 2], while if the right component is
listed first, we obtain the smaller endofunction [1, 1, 3].

2.5. The algorithm and its running time. Here is a summary of the algorithm for
obtaining the smallest representative of the Sn-conjugacy class of a given endofunction t ∈ Tn.

Step 1: Construct the digraph G(t), identify its connected components and its cycles.
Step 2: For each connected component, calculate structural vertex and edge labels for

every tree rooted in the cycle, see §2.3.
Step 3: For each connected component, determine the location of 1 on the cycle, see §2.1

and §2.3.
Step 4: Order the connected components according to the spelling bee dictionary order,

see §2.2, and concatenate the minimal representatives of connected components, shifting the
entries of each component suitably.

As for the complexity of the algorithm, we will use the following result:

Lemma 2.11. Let a1, . . . , am be sequences over an r-letter alphabet and of total combined
length n. Then a1, . . . , am can be lexicographically sorted in time O(n) using m bins of total
capacity n, assuming that each of the r symbols can be processed in unit time and stored in
unit space.
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Proof. Scan the first entry of every sequence and place the sequences in one of the r bins
accordingly. Ignoring empty bins, we need at most m bins since there are only m sequences.
Since n is the total length of the sequences, the total bin capacity of n suffices. In any given
bin we can now ignore the first entry of sequences therein and sort the sequences recursively
by focusing on the second entry, etc. Since every entry of every sequence is scanned at most
once, we finish in time O(n). □

Step 1 of the algorithm can be done in time O(n).
In Step 2, at each of the≤ n vertices of the trees, we need to sort at most n structural labels

of total combined length at most n. By Lemma 2.11, this can be done in nO(n) = O(n2).
In Step 3, consider a connected component Ui of size ui with a cycle of size ci. To place 1

on the cycle, we consider all ci possible locations, construct the corresponding endofunctions,
and keep the smallest one. Each of the ci endofunctions can be constructed in O(ui), so all
can be constructed in ciO(ui) ≤ uiO(ui) = O(u2

i ). The smallest endofunction can then be
found in ciO(ui) ≤ O(u2

i ). Since
∑

ui = n, we have
∑

u2
i ≤ n2, and the entire step can be

completed in O(n2).
In Step 4, we need to sort sequences of total length n in the spelling bee dictionary order

(which for the purposes of computational complexity is the same as the lexicographic order),
which can be done in O(n) by Lemma 2.11.

Overall, the algorithm runs in O(n2).

The algorithm has been implemented in GAP [9] using package Digraphs [7]. It can be
downloaded from the webpage of the third author http://www.math.du.edu/~petr.

We have tested the algorithm against the general state-of-the-art algorithm for minimal
images under actions of permutation groups, implemented in the GAP package images [11].
Given a transformation f on {1, . . . , n}, the minimal representative of the Sn-orbit of f can
be calculated with images by the command MinimalImage( SymmetricGroup( n ), f ),
where the default action OnPoints is the conjugation of transformations by permutations.

Table 1. A comparison of running times (in milliseconds) of our algorithm
and the algorithm of images.

n 10 20 30 40 50 100 200 500 1000 10000

ours 0.2 0.3 0.4 0.6 0.9 2.2 6.0 30.3 89.3 8471.6
images 1.5 8.8 33.3 95.9 284.9 8112.8

Table 1 summarizes the average running time of the two algorithms on a random transfor-
mation of {1, . . . , n}. We have used one hundred transformations for every n ≤ 50 and ten
transformations for every n > 50. For a given n, the same list of random transformations
has been used by both algorithms. The algorithm of images did not finish in ten minutes
on a transformation of length n ≥ 200 and we therefore do not report the running times
in those cases. Whenever both algorithms finished, we compared the results—they always
agreed.

3. Concluding remarks

A special case of the algorithm occurs when t ∈ Tn is a permutation. The standard way of
finding the minimal representative of a conjugacy class in Sn containing a permutation t is

10
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to calculate the cycles of t, order the cycles by length in increasing order, and label elements
in cycles consecutively. Note that this can be performed in O(n) by a bin sort, where all
k-cycles are stored in the bin labeled k.

The algorithm presented here can also be used to calculate the automorphism group of a
functional digraph G on n vertices. Let us label the vertices of G arbitrarily by {1, . . . , n}.
We can now calculate the minimal representative of the corresponding endofunction. In the
process we obtain structural labels, we locate 1 in every cycle, and we order the connected
components. Anytime a tie occurs among the structural edge labels leading to a vertex
v (as indicated by asterisks in Example 2.8), the corresponding isomorphic subtrees can be
permuted accordingly, giving rise to an automorphism of G. Rotational symmetries of a con-
nected component can be found upon detecting the same concatenation of structural vertex
labels while going around the cycle from two different starting points. Finally, while ordering
the connected components, every tie gives rise to yet another automorphism of G that flips
the connected components. The automorphisms so obtained generate the automorphism
group of G.
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