[go: up one dir, main page]

login
Search: a002674 -id:a002674
     Sort: relevance | references | number | modified | created      Format: long | short | data
Sum of distinct terms of A002674: a(0) = 0, a(2n) = A255411(A153880(a(n))), a(2n+1) = 1+A255411(A153880(a(n))).
+20
8
0, 1, 12, 13, 360, 361, 372, 373, 20160, 20161, 20172, 20173, 20520, 20521, 20532, 20533, 1814400, 1814401, 1814412, 1814413, 1814760, 1814761, 1814772, 1814773, 1834560, 1834561, 1834572, 1834573, 1834920, 1834921, 1834932, 1834933, 239500800, 239500801, 239500812, 239500813, 239501160, 239501161, 239501172, 239501173, 239520960, 239520961
OFFSET
0,3
COMMENTS
Fixed points of involution A225901.
This can be also viewed as a function that reinterprets base-2 representation of n in base-((2n)!/2) where the digits are multiplied with the successive terms of A002674, thus a(0) = 0.
FORMULA
a(0) = 0, a(2n) = A255411(A153880(a(n))), a(2n+1) = 1+A255411(A153880(a(n))).
a(n) = A276089(A276091(n)).
PROG
(Scheme, three versions. Some require Antti Karttunen's IntSeq-library)
;; This implements the given recurrence:
(definec (A275959 n) (cond ((zero? n) n) ((even? n) (A255411 (A153880 (A275959 (/ n 2))))) (else (+ 1 (A255411 (A153880 (A275959 (/ (- n 1) 2))))))))
(define (A275959 n) (A276089 (A276091 n)))
(define A275959 (FIXED-POINTS 0 0 A225901)) ;; Slow!
(Python)
from sympy import factorial as f
def a007623(n, p=2): return n if n<p else a007623(n//p, p+1)*10 + n%p
def a255411(n):
x=(str(a007623(n)) + '0')
y="".join(str(int(i) + 1) if int(i)>0 else '0' for i in x)[::-1]
return 0 if n==0 else sum([int(y[i])*f(i + 1) for i in range(len(y))])
def a153880(n):
x=(str(a007623(n)) + '0')[::-1]
return 0 if n==0 else sum([int(x[i])*f(i + 1) for i in range(len(x))])
def a(n): return 0 if n==0 else a255411(a153880(a(n//2))) if n%2==0 else 1 + a255411(a153880(a((n - 1)//2)))
print([a(n) for n in range(101)]) # Indranil Ghosh, Jun 20 2017
CROSSREFS
Fixed points of A225901.
Subsequence of A275956 and of A276089.
KEYWORD
nonn,base
AUTHOR
Antti Karttunen, Aug 16 2016
STATUS
approved
Order of alternating group A_n, or number of even permutations of n letters.
(Formerly M2933 N1179)
+10
213
1, 1, 1, 3, 12, 60, 360, 2520, 20160, 181440, 1814400, 19958400, 239500800, 3113510400, 43589145600, 653837184000, 10461394944000, 177843714048000, 3201186852864000, 60822550204416000, 1216451004088320000, 25545471085854720000, 562000363888803840000
OFFSET
0,4
COMMENTS
For n >= 3, a(n-1) is also the number of ways that a 3-cycle in the symmetric group S_n can be written as a product of 2 long cycles (of length n). - Ahmed Fares (ahmedfares(AT)my-deja.com), Aug 14 2001
a(n) is the number of Hamiltonian circuit masks for an n X n adjacency matrix of an undirected graph. - Chad Brewbaker, Jan 31 2003
a(n-1) is the number of necklaces one can make with n distinct beads: n! bead permutations, divide by two to represent flipping the necklace over, divide by n to represent rotating the necklace. Related to Stirling numbers of the first kind, Stirling cycles. - Chad Brewbaker, Jan 31 2003
Number of increasing runs in all permutations of [n-1] (n>=2). Example: a(4)=12 because we have 12 increasing runs in all the permutations of [3] (shown in parentheses): (123), (13)(2), (3)(12), (2)(13), (23)(1), (3)(2)(1). - Emeric Deutsch, Aug 28 2004
Minimum permanent over all n X n (0,1)-matrices with exactly n/2 zeros. - Simone Severini, Oct 15 2004
The number of permutations of 1..n that have 2 following 1 for n >= 1 is 0, 1, 3, 12, 60, 360, 2520, 20160, ... . - Jon Perry, Sep 20 2008
Starting (1, 3, 12, 60, ...) = binomial transform of A000153: (1, 2, 7, 32, 181, ...). - Gary W. Adamson, Dec 25 2008
First column of A092582. - Mats Granvik, Feb 08 2009
The asymptotic expansion of the higher order exponential integral E(x,m=1,n=3) ~ exp(-x)/x*(1 - 3/x + 12/x^2 - 60/x^3 + 360/x^4 - 2520/x^5 + 20160/x^6 - 81440/x^7 + ...) leads to the sequence given above. See A163931 and A130534 for more information. - Johannes W. Meijer, Oct 20 2009
For n>1: a(n) = A173333(n,2). - Reinhard Zumkeller, Feb 19 2010
Starting (1, 3, 12, 60, ...) = eigensequence of triangle A002260, (a triangle with k terms of (1,2,3,...) in each row given k=1,2,3,...). Example: a(6) = 360, generated from (1, 2, 3, 4, 5) dot (1, 1, 3, 12, 60) = (1 + 2 + 9 + 48 + 300). - Gary W. Adamson, Aug 02 2010
For n>=2: a(n) is the number of connected 2-regular labeled graphs on (n+1) nodes (Cf. A001205). - Geoffrey Critzer, Feb 16 2011.
The Fi1 and Fi2 triangle sums of A094638 are given by the terms of this sequence (n>=1). For the definition of these triangle sums see A180662. - Johannes W. Meijer, Apr 20 2011
Also [1, 1] together with the row sums of triangle A162608. - Omar E. Pol, Mar 09 2012
a(n-1) is, for n>=2, also the number of necklaces with n beads (only C_n symmetry, no turnover) with n-1 distinct colors and signature c[.]^2 c[.]^(n-2). This means that two beads have the same color, and for n=2 the second factor is omitted. Say, cyclic(c[1]c[1]c[2]c[3]..c[n-1]), in short 1123...(n-1), taken cyclically. E.g., n=2: 11, n=3: 112, n=4: 1123, 1132, 1213, n=5: 11234, 11243, 11324, 11342, 11423, 11432, 12134, 12143, 13124, 13142, 14123, 14132. See the next-to-last entry in line n>=2 of the representative necklace partition array A212359. - Wolfdieter Lang, Jun 26 2012
For m >= 3, a(m-1) is the number of distinct Hamiltonian circuits in a complete simple graph with m vertices. See also A001286. - Stanislav Sykora, May 10 2014
In factorial base (A007623) these numbers have a simple pattern: 1, 1, 1, 11, 200, 2200, 30000, 330000, 4000000, 44000000, 500000000, 5500000000, 60000000000, 660000000000, 7000000000000, 77000000000000, 800000000000000, 8800000000000000, 90000000000000000, 990000000000000000, etc. See also the formula based on this observation, given below. - Antti Karttunen, Dec 19 2015
Also (by definition) the independence number of the n-transposition graph. - Eric W. Weisstein, May 21 2017
Number of permutations of n letters containing an even number of even cycles. - Michael Somos, Jul 11 2018
Equivalent to Brewbaker's and Sykora's comments, a(n - 1) is the number of undirected cycles covering n labeled vertices, hence the logarithmic transform of A002135. - Gus Wiseman, Oct 20 2018
For n >= 2 and a set of n distinct leaf labels, a(n) is the number of binary, rooted, leaf-labeled tree topologies that have a caterpillar shape (column k=1 of A306364). - Noah A Rosenberg, Feb 11 2019
Also the clique covering number of the n-Bruhat graph. - Eric W. Weisstein, Apr 19 2019
a(n) is the number of lattices of the form [s,w] in the weak order on S_n, for a fixed simple reflection s. - Bridget Tenner, Jan 16 2020
For n > 3, a(n) = p_1^e_1*...*p_m^e_m, where p_1 = 2 and e_m = 1. There exists p_1^x where x <= e_1 such that p_1^x*p_m^e_m is a primitive Zumkeller number (A180332) and p_1^e_1*p_m^e_m is a Zumkeller number (A083207). Therefore, for n > 3, a(n) = p_1^e_1*p_m^e_m*r, where r is relatively prime to p_1*p_m, is also a Zumkeller number. - Ivan N. Ianakiev, Mar 11 2020
For n>1, a(n) is the number of permutations of [n] that have 1 and 2 as cycle-mates, that is, 1 and 2 are contained in the same cycle of a cyclic representation of permutations of [n]. For example, a(4) counts the 12 permutations with 1 and 2 as cycle-mates, namely, (1 2 3 4), (1 2 4 3), (1 3 2 4), (1 3 4 2), (1 4 2 3), (1 4 3 2), (1 2 3) (4), (1 3 2) (4), (1 2 4 )(3), (1 4 2)(3), (1 2)(3 4), and (1 2)(3)(4). Since a(n+2)=row sums of A162608, our result readily follows. - Dennis P. Walsh, May 28 2020
REFERENCES
J. Riordan, An Introduction to Combinatorial Analysis, Wiley, 1958, pp. 87-8, 20. (a), c_n^e(t=1).
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
Somaya Barati, Beáta Bényi, Abbas Jafarzadeh, and Daniel Yaqubi, Mixed restricted Stirling numbers, arXiv:1812.02955 [math.CO], 2018.
Paul Barry, General Eulerian Polynomials as Moments Using Exponential Riordan Arrays, Journal of Integer Sequences, 16 (2013), #13.9.6.
Paul Barry, On the Gap-sum and Gap-product Sequences of Integer Sequences, arXiv:2104.05593 [math.CO], 2021.
Jonathan Beagley and Lara Pudwell, Colorful Tilings and Permutations, Journal of Integer Sequences, Vol. 24 (2021), Article 21.10.4.
Olivier Bodini, Antoine Genitrini, and Mehdi Naima, Ranked Schröder Trees, arXiv:1808.08376 [cs.DS], 2018.
Olivier Bodini, Antoine Genitrini, Cécile Mailler, and Mehdi Naima, Strict monotonic trees arising from evolutionary processes: combinatorial and probabilistic study, hal-02865198 [math.CO] / [math.PR] / [cs.DS] / [cs.DM], 2020.
Peter J. Cameron, Sequences realized by oligomorphic permutation groups, J. Integ. Seqs. Vol. 3 (2000), Article 00.1.5.
Camille Combe and Samuele Giraudo, Cliff operads: a hierarchy of operads on words, arXiv:2106.14552 [math.CO], 2021.
Mareike Fischer, Extremal Values of the Sackin Tree Balance Index, Ann. Comb. (2021) Vol. 25, 515-541, Remark 7.
Hannah Golab, Pattern avoidance in Cayley permutations, Master's Thesis, Northern Arizona Univ. (2024). See p. 36.
Shirali Kadyrov and Farukh Mashurov, Generalized continued fraction expansions for Pi and E, arXiv:1912.03214 [math.NT], 2019.
Chanchal Kumar and Amit Roy, Integer Sequences and Monomial Ideals, arXiv:2003.10098 [math.CO], 2020.
Wolfdieter Lang, On generalizations of Stirling number triangles, J. Integer Seqs., Vol. 3 (2000), Article 00.2.4.
D. S. Mitrinovic and M. S. Mitrinovic, Tableaux d'une classe de nombres reliés aux nombres de Stirling, Univ. Beograd. Publ. Elektrotehn. Fak. Ser. Mat. Fiz. No. 77 (1962), 1-77.
Robert E. Moritz, On the sum of products of n consecutive integers, Univ. Washington Publications in Math., 1 (No. 3, 1926), 44-49 [Annotated scanned copy]
Alexsandar Petojevic, The Function vM_m(s; a; z) and Some Well-Known Sequences, Journal of Integer Sequences, Vol. 5 (2002), Article 02.1.7.
S-Z Song, S-G Hwang, S-H Rim, and G-S Cheon, Extremes of permanents of (0,1)-matrices, Special issue on the Combinatorial Matrix Theory Conference (Pohang, 2002). Linear Algebra Appl. 373 (2003), 197-210.
A. N. Stokes, Continued fraction solutions of the Riccati equation, Bull. Austral. Math. Soc. Vol. 25 (1982), 207-214.
B. E. Tenner, Interval structures in the Bruhat and weak orders, arXiv:2001.05011 [math.CO], 2020.
Eric Weisstein's World of Mathematics, Alternating Group.
Eric Weisstein's World of Mathematics, Bruhat Graph.
Eric Weisstein's World of Mathematics, Circular Permutation.
Eric Weisstein's World of Mathematics, Clique Covering Number.
Eric Weisstein's World of Mathematics, Even Permutation.
Eric Weisstein's World of Mathematics, Hamiltonian Cycle.
Eric Weisstein's World of Mathematics, Independence Number.
Eric Weisstein's World of Mathematics, Odd Permutation.
Eric Weisstein's World of Mathematics, Transposition Graph.
Jun Yan, Results on pattern avoidance in parking functions, arXiv:2404.07958 [math.CO], 2024. See p. 7.
FORMULA
a(n) = numerator(n!/2) and A141044(n) = denominator(n!/2).
D-finite with recurrence: a(0) = a(1) = a(2) = 1; a(n) = n*a(n-1) for n>2. - Chad Brewbaker, Jan 31 2003 [Corrected by N. J. A. Sloane, Jul 25 2008]
a(0) = 0, a(1) = 1; a(n) = Sum_{k=1..n-1} k*a(k). - Amarnath Murthy, Oct 29 2002
Stirling transform of a(n+1) = [1, 3, 12, 160, ...] is A083410(n) = [1, 4, 22, 154, ...]. - Michael Somos, Mar 04 2004
First Eulerian transform of A000027. See A000142 for definition of FET. - Ross La Haye, Feb 14 2005
From Paul Barry, Apr 18 2005: (Start)
a(n) = 0^n + Sum_{k=0..n} (-1)^(n-k-1)*T(n-1, k)*cos(Pi*(n-k-1)/2)^2.
T(n,k) = abs(A008276(n, k)). (End)
E.g.f.: (2 - x^2)/(2 - 2*x).
E.g.f. of a(n+2), n>=0, is 1/(1-x)^3.
E.g.f.: 1 + sinh(log(1/(1-x))). - Geoffrey Critzer, Dec 12 2010
a(n+1) = (-1)^n * A136656(n,1), n>=1.
a(n) = n!/2 for n>=2 (proof from the e.g.f). - Wolfdieter Lang, Apr 30 2010
a(n) = (n-2)! * t(n-1), n>1, where t(n) is the n-th triangular number (A000217). - Gary Detlefs, May 21 2010
a(n) = ( A000254(n) - 2* A001711(n-3) )/3, n>2. - Gary Detlefs, May 24 2010
O.g.f.: 1 + x*Sum_{n>=0} n^n*x^n/(1 + n*x)^n. - Paul D. Hanna, Sep 13 2011
a(n) = if n < 2 then 1, otherwise Pochhammer(n,n)/binomial(2*n,n). - Peter Luschny, Nov 07 2011
a(n) = Sum_{k=0..floor(n/2)} s(n,n-2*k) where s(n,k) are Stirling number of the first kind, A048994. - Mircea Merca, Apr 07 2012
a(n-1), n>=3, is M_1([2,1^(n-2)])/n = (n-1)!/2, with the M_1 multinomial numbers for the given n-1 part partition of n. See the second to last entry in line n>=3 of A036038, and the above necklace comment by W. Lang. - Wolfdieter Lang, Jun 26 2012
G.f.: A(x) = 1 + x + x^2/(G(0)-2*x) where G(k) = 1 - (k+1)*x/(1 - x*(k+3)/G(k+1)); (continued fraction). - Sergei N. Gladkovskii, Dec 26 2012.
G.f.: 1 + x + (Q(0)-1)*x^2/(2*(sqrt(x)+x)), where Q(k) = 1 + (k+2)*sqrt(x)/(1 - sqrt(x)/(sqrt(x) + 1/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 15 2013
G.f.: 1 + x + (x*Q(x)-x^2)/(2*(sqrt(x)+x)), where Q(x) = Sum_{n>=0} (n+1)!*x^n*sqrt(x)*(sqrt(x) + x*(n+2)). - Sergei N. Gladkovskii, May 15 2013
G.f.: 1 + x/2 + (Q(0)-1)*x/(2*(sqrt(x)+x)), where Q(k) = 1 + (k+1)*sqrt(x)/(1 - sqrt(x)/(sqrt(x) + 1/Q(k+1))); (continued fraction). - Sergei N. Gladkovskii, May 15 2013
G.f.: 1 + x + x^2*G(0)/2, where G(k) = 1 + 1/(1 - x/(x + 1/(k+3)/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Jun 01 2013
G.f.: 1+x + x^2*W(0), where W(k) = 1 - x*(k+3)/( x*(k+3) - 1/(1 - x*(k+1)/( x*(k+1) - 1/W(k+1) ))); (continued fraction). - Sergei N. Gladkovskii, Aug 26 2013
From Antti Karttunen, Dec 19 2015: (Start)
a(0)=a(1)=1; after which, for even n: a(n) = (n/2) * (n-1)!, and for odd n: a(n) = (n-1)/2 * ((n-1)! + (n-2)!). [The formula was empirically found after viewing these numbers in factorial base, A007623, and is easily proved by considering formulas from Lang (Apr 30 2010) and Detlefs (May 21 2010) shown above.]
For n >= 1, a(2*n+1) = a(2*n) + A153880(a(2*n)). [Follows from above.] (End)
Inverse Stirling transform of a(n) is (-1)^(n-1)*A009566(n). - Anton Zakharov, Aug 07 2016
a(n) ~ sqrt(Pi/2)*n^(n+1/2)/exp(n). - Ilya Gutkovskiy, Aug 07 2016
a(n) = A006595(n-1)*n/A000124(n) for n>=2. - Anton Zakharov, Aug 23 2016
a(n) = A001563(n-1) - A001286(n-1) for n>=2. - Anton Zakharov, Sep 23 2016
From Peter Bala, May 24 2017: (Start)
The o.g.f. A(x) satisfies the Riccati equation x^2*A'(x) + (x - 1)*A(x) + 1 - x^2 = 0.
G.f.: A(x) = 1 + x + x^2/(1 - 3*x/(1 - x/(1 - 4*x/(1 - 2*x/(1 - 5*x/(1 - 3*x/(1 - ... - (n + 2)*x/(1 - n*x/(1 - ... ))))))))) (apply Stokes, 1982).
A(x) = 1 + x + x^2/(1 - 2*x - x/(1 - 3*x/(1 - 2*x/(1 - 4*x/(1 - 3*x/(1 - 5*x/(1 - ... - n*x/(1 - (n+2)*x/(1 - ... ))))))))). (End)
H(x) = (1 - (1 + x)^(-2)) / 2 = x - 3*x^2/2! + 12*x^3/3! - ..., an e.g.f. for the signed sequence here (n!/2!), ignoring the first two terms, is the compositional inverse of G(x) = (1 - 2*x)^(-1/2) - 1 = x + 3*x^2/2! + 15*x^3/3! + ..., an e.g.f. for A001147. Cf. A094638. H(x) is the e.g.f. for the sequence (-1)^m * m!/2 for m = 2,3,4,... . Cf. A001715 for n!/3! and A001720 for n!/4!. Cf. columns of A094587, A173333, and A213936 and rows of A138533. - Tom Copeland, Dec 27 2019
From Amiram Eldar, Jan 08 2023: (Start)
Sum_{n>=0} 1/a(n) = 2*(e-1).
Sum_{n>=0} (-1)^n/a(n) = 2/e. (End)
EXAMPLE
G.f. = 1 + x + x^2 + 3*x^3 + 12*x^4 + 60*x^5 + 360*x^6 + 2520*x^7 + ...
MAPLE
seq(mul(k, k=3..n), n=0..20); # Zerinvary Lajos, Sep 14 2007
MATHEMATICA
a[n_]:= If[n > 2, n!/2, 1]; Array[a, 21, 0]
a[n_]:= If[n<3, 1, n*a[n-1]]; Array[a, 21, 0]; (* Robert G. Wilson v, Apr 16 2011 *)
a[ n_]:= If[n<0, 0, n! SeriesCoefficient[(2-x^2)/(2-2x), {x, 0, n}]]; (* Michael Somos, May 22 2014 *)
a[ n_]:= If[n<0, 0, n! SeriesCoefficient[1 +Sinh[-Log[1-x]], {x, 0, n}]]; (* Michael Somos, May 22 2014 *)
Numerator[Range[0, 20]!/2] (* Eric W. Weisstein, May 21 2017 *)
Table[GroupOrder[AlternatingGroup[n]], {n, 0, 20}] (* Eric W. Weisstein, May 21 2017 *)
PROG
(Magma) [1] cat [Order(AlternatingGroup(n)): n in [1..20]]; // Arkadiusz Wesolowski, May 17 2014
(PARI) {a(n) = if( n<2, n>=0, n!/2)};
(PARI) a(n)=polcoeff(1+x*sum(m=0, n, m^m*x^m/(1+m*x+x*O(x^n))^m), n) \\ Paul D. Hanna
(PARI) A001710=n->n!\2+(n<2) \\ M. F. Hasler, Dec 01 2013
(Scheme, using memoization-macro definec for which an implementation can be found in http://oeis.org/wiki/Memoization )
(definec (A001710 n) (cond ((<= n 2) 1) (else (* n (A001710 (- n 1))))))
;; Antti Karttunen, Dec 19 2015
(Python)
from math import factorial
def A001710(n): return factorial(n)>>1 if n > 1 else 1 # Chai Wah Wu, Feb 14 2023
(SageMath)
def A001710(n): return (factorial(n) +int(n<2))//2
[A001710(n) for n in range(31)] # G. C. Greubel, Sep 28 2024
CROSSREFS
a(n+1)= A046089(n, 1), n >= 1 (first column of triangle), A161739 (q(n) sequence).
Bisections are A002674 and A085990 (essentially).
Row 3 of A265609 (essentially).
Row sums of A307429.
KEYWORD
nonn,easy,nice
EXTENSIONS
More terms from Larry Reeves (larryr(AT)acm.org), Aug 20 2001
Further terms from Simone Severini, Oct 15 2004
STATUS
approved
a(n) = (2n)!.
+10
130
1, 2, 24, 720, 40320, 3628800, 479001600, 87178291200, 20922789888000, 6402373705728000, 2432902008176640000, 1124000727777607680000, 620448401733239439360000, 403291461126605635584000000, 304888344611713860501504000000, 265252859812191058636308480000000
OFFSET
0,2
COMMENTS
Denominators in the expansion of cos(x): cos(x) = 1 - x^2/2! + x^4/4! - x^6/6! + x^8/8! - ...
Contribution from Peter Bala, Feb 21 2011: (Start)
We may compare the representation a(n) = Product_{k = 0..n-1} (n*(n+1)-k*(k+1)) with n! = Product_{k = 0..n-1} (n-k). Thus we may view a(n) as a generalized factorial function associated with the oblong numbers A002378. Cf. A000680.
The associated generalized binomial coefficients a(n)/(a(k)*a(n-k)) are triangle A086645, cf. A186432. (End)
Also, this sequence is the denominator of cosh(x) = (e^x + e^(-x))/2 = 1 + x^2/2! + x^4/4! + x^6/6! + ... - Mohammad K. Azarian, Jan 19 2012
Also (2n+1)-th derivative of arccoth(x) at x = 0. - Michel Lagneau, Aug 18 2012
Product of the partition parts of 2n+1 into exactly two positive integer parts, n > 0. Example: a(3) = 720, since 2(3)+1 = 7 has 3 partitions with exactly two positive integer parts: (6,1), (5,2), (4,3). Multiplying the parts in these partitions gives: 6! = 720. - Wesley Ivan Hurt, Jun 03 2013
REFERENCES
H. B. Dwight, Tables of Integrals and Other Mathematical Data, Macmillan, NY, 1968, p. 88.
Isaac Newton, De analysi, 1669; reprinted in D. Whiteside, ed., The Mathematical Works of Isaac Newton, vol. 1, Johnson Reprint Co., 1964; see p. 20.
LINKS
W. Dunham, Touring the calculus gallery, Amer. Math. Monthly, 112 (2005), 1-19.
Alois Panholzer, Parking function varieties for combinatorial tree models, arXiv:2007.14676 [math.CO], 2020.
Robert A. Proctor, Let's Expand Rota's Twelvefold Way For Counting Partitions!, arXiv:math/0606404 [math.CO], 2006-2007.
Eric Weisstein's World of Mathematics, Hyperbolic Cosine
FORMULA
a(n) = 2^n*A000680(n).
E.g.f.: arctanh(x) = Sum_{k>=0} a(k) * x^(2*k+1)/ (2*k+1)!.
E.g.f.: 1/(1-x^2) = Sum_{k>=0} a(k) * x^(2*k) / (2*k)!. - Paul Barry, Sep 14 2004
D-finite with recurrence: a(n+1) = a(n)*(2*n+1)*(2*n+2) = a(n)*A002939(n-1). - Lekraj Beedassy, Apr 29 2005
a(n) = Product_{k = 1..n} (2*k*n-k*(k-1)). - Peter Bala, Feb 21 2011
G.f.: G(0) where G(k) = 1 + 2*x*(2*k+1)*(4*k+1)/(1 - 4*x*(k+1)*(4*k+3)/(4*x*(k+1)*(4*k+3) + 1/G(k+1))); (continued fraction). - Sergei N. Gladkovskii, Nov 18 2012
a(n) = 2*A002674(n), n > 0. - Wesley Ivan Hurt, Jun 05 2013
From Ilya Gutkovskiy, Jan 20 2017: (Start)
a(n) ~ 2*sqrt(Pi)*4^n*n^(2*n+1/2)/exp(2*n).
Sum_{n>=0} 1/a(n) = cosh(1) = A073743. (End)
EXAMPLE
G.f. = 1 + 2*x + 24*x^2 + 720*x^3 + 40320*x^4 + 3628800*x^5 + ...
MAPLE
A010050 := proc(n) (2*n)! ; end proc: # R. J. Mathar, Feb 28 2011
PROG
(Sage) [stirling_number1(2*n+1, 1) for n in range(0, 22)] # Zerinvary Lajos, Nov 26 2009
(Magma)[Factorial(2*n): n in [0..15]]; // Vincenzo Librandi, Aug 21 2011
(PARI) a(n)=(n*2)! \\ M. F. Hasler, Apr 22 2015
CROSSREFS
KEYWORD
nonn,easy
AUTHOR
Joe Keane (jgk(AT)jgk.org)
EXTENSIONS
Third line of data from M. F. Hasler, Apr 22 2015
STATUS
approved
a(n) = 4^n*(2*n+1)!.
(Formerly M5174 N2246)
+10
16
1, 24, 1920, 322560, 92897280, 40874803200, 25505877196800, 21424936845312000, 23310331287699456000, 31888533201572855808000, 53572735778642397757440000, 108431217215972213061058560000
OFFSET
0,2
COMMENTS
From Sanjar Abrarov, Mar 30 2019: (Start)
There is a formula for numerical integration (see MATLAB Central file ID# 71037):
Integral_{x=0..1} f(x) dx = 2*Sum_{m=1..M} Sum_{n>=0} 1/((2*M)^(2*n + 1)*(2*n + 1)!)*f^(2*n)(x)|_x = (m - 1/2)/M, where the notation f^(2*n)(x)|_x = (m - 1/2)/M is the (2*n)-th derivative of the function f(x) at the points x = (m - 1/2)/M.
When we choose M = 1, then the corresponding coefficients are generated as 2*1/(2^(2*n + 1)*(2*n + 1)!) = 1/(4^n*(2*n + 1)!).
Therefore, this sequence also occurs in the denominator of the numerical integration formula at M = 1. (End)
From Peter Bala, Oct 03 2019: (Start)
Denominators in the expansion of 2*sinh(x/2) = x + x^3/24 + x^5/1920 + x^7/322560 + ....
If f(x) is a polynomial in x then the central difference f(x+1/2) - f(x-1/2) = 2*sinh(D/2)(f(x)) = D(f(x)) + (1/24)*D^3(f(x)) + (1/1920)*D^5(f(x)) + ..., where D denotes the differential operator d/dx. Formulas for higher central differences in terms of powers of the operator D can be obtained from the expansion of powers of the function 2*sinh(x/2). For example, the expansion (2*sinh(x/2))^2 = x^2 + (1/12)*x^4 + (1/360)*x^6 + .. leads to the second central difference formula f(x+1) - 2*f(x) + f(x-1) = D^2(f(x)) + (1/12)*D^4(f(x)) + (1/360)* D^6(f(x)) + .... See A002674. (End)
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
S. M. Abrarov and B. M. Quine, Array numerical integration by enhanced midpoint rule, MATLAB Central file ID #: 71037.
H. E. Salzer, Tables of coefficients for obtaining central differences from the derivatives, Journal of Mathematics and Physics (this journal is also called Studies in Applied Mathematics), 42 (1963), 162-165, plus several inserted tables. [Note that there is a mistake in the definition of this sequence on line 2 of page 164.]
Eric Weisstein's World of Mathematics, Central Difference.
FORMULA
a(n) = 16^n * Pochhammer(1,n) * Pochhammer(3/2,n). - Roger L. Bagula, Apr 26 2013
From Amiram Eldar, Apr 09 2022: (Start)
Sum_{n>=0} 1/a(n) = 2*sinh(1/2).
Sum_{n>=0} (-1)^n/a(n) = 2*sin(1/2). (End)
MATHEMATICA
a[n_] := 4^n*(2*n + 1)!; Array[a, 12, 0] (* Amiram Eldar, Apr 09 2022 *)
PROG
(PARI) a(n)=4^n*(2*n+1)!
CROSSREFS
A bisection of A002866 and (apart from initial term) also a bisection of A007346.
Row sums of A225076. - Roger L. Bagula, Apr 27 2013
KEYWORD
nonn,easy
EXTENSIONS
More terms from Michael Somos
STATUS
approved
a(n) = binomial(2*n+1,n)*(n+1)^2.
(Formerly M4855 N2075)
+10
15
1, 12, 90, 560, 3150, 16632, 84084, 411840, 1969110, 9237800, 42678636, 194699232, 878850700, 3931426800, 17450721000, 76938289920, 337206098790, 1470171918600, 6379820115900, 27569305764000, 118685861314020, 509191949220240, 2177742427450200, 9287309860732800
OFFSET
0,2
COMMENTS
Coefficients for numerical differentiation.
Take the first n integers 1,2,3..n and find all combinations with repetitions allowed for the first n of them. Find the sum of each of these combinations to get this sequence. Example for 1 and 2: 1,2,1+1,1+2,2+2 gives sum of 12=a(2). - J. M. Bergot, Mar 08 2016
Let cos(x) = 1 -x^2/2 +x^4/4!-x^6/6!.. = Sum_i (-1)^i x^(2i)/(2i)! be the standard power series of the cosine, and y = 2*(1-cos(x)) = 4*sin^2(x/2) = x^2 -x^4/12 +x^6/360 ...= Sum_i 2*(-1)^(i+1) x^(2i)/(2i)! be a closely related series. Then this sequence represents the reversion x^2 = Sum_i 1/a(i) *y^(i+1). - R. J. Mathar, May 03 2022
REFERENCES
C. Lanczos, Applied Analysis. Prentice-Hall, Englewood Cliffs, NJ, 1956, p. 514.
J. Ser, Les Calculs Formels des Séries de Factorielles. Gauthier-Villars, Paris, 1933, p. 92.
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
W. G. Bickley and J. C. P. Miller, Numerical differentiation near the limits of a difference table, Phil. Mag., 33 (1942), 1-12 (plus tables) [Annotated scanned copy]
Ömür Deveci and Anthony G. Shannon, Some aspects of Neyman triangles and Delannoy arrays, Mathematica Montisnigri (2021) Vol. L, 36-43.
C. Lanczos, Applied Analysis (Annotated scans of selected pages)
A. Petojevic and N. Dapic, The vAm(a,b,c;z) function, Preprint 2013.
H. E. Salzer, Coefficients for numerical differentiation with central differences, J. Math. Phys., 22 (1943), 115-135.
H. E. Salzer, Coefficients for numerical differentiation with central differences, J. Math. Phys., 22 (1943), 115-135. [Annotated scanned copy]
J. Ser, Les Calculs Formels des Séries de Factorielles, Gauthier-Villars, Paris, 1933 [Local copy].
J. Ser, Les Calculs Formels des Séries de Factorielles (Annotated scans of some selected pages)
R. Shenton and A. W. Kemp, An S-fraction and ln^2(1+x), Journal of Computational and Applied Mathematics, 26 (1989) 367-370 North-Holland.
T. R. Van Oppolzer, Lehrbuch zur Bahnbestimmung der Kometen und Planeten, Vol. 2, Engelmann, Leipzig, 1880, p. 21.
Mats Vermeeren, A dynamical solution to the Basel problem, arXiv preprint arXiv:1506.05288 [math.CA], 2015.
FORMULA
G.f.: (1 + 2x)/(1 - 4x)^(5/2).
a(n-1) = sum(i_1 + i_2 + ... + i_n) where the sum is over 0 <= i_1 <= i_2 <= ... <= i_n <= n; a(n) = (n+1)^2 C(2n+1, n). - David Callan, Nov 20 2003
a(n) = (n+1)^2 * binomial(2*n+2,n+1)/2. - Zerinvary Lajos, May 31 2006
Asymptotics: a(n)-> (1/64) * (128*n^2+176*n+41) * 4^n * n^(-1/2)/(sqrt(Pi)), for n->infinity. - Karol A. Penson, Aug 05 2013
G.f.: 2F1(3/2,2;1;4x). - R. J. Mathar, Aug 09 2015
a(n) = A002457(n)*(n+1). - R. J. Mathar, Aug 09 2015
a(n) = A000217(n)*A000984(n). - J. M. Bergot, Mar 10 2016
a(n-1) = A001791(n)*n*(n+1)/2. - Anton Zakharov, Jul 04 2016
From Ilya Gutkovskiy, Jul 04 2016: (Start)
E.g.f.: ((1 + 2*x)*(1 + 8*x)*BesselI(0,2*x) + 2*x*(3 + 8*x)*BesselI(1,2*x))*exp(2*x).
Sum_{n>=0} 1/a(n) = Pi^2/9 = A100044. (End)
From Peter Bala, Apr 18 2017: (Start)
With x = y^2/(1 + y) we have log^2(1 + y) = Sum_{n >= 0} (-1)^n*x^(n+1)/a(n). See Shenton and Kemp.
Series reversion ( Sum_{n >= 0} (-1)^n*x^(n+1)/a(n) ) = Sum_{n >= 1} 2*x^n/(2*n)! = Sum_{n >= 1} x^n/A002674(n). (End)
D-finite with recurrence n^2*a(n) -2*(n+1)*(2*n+1)*a(n-1)=0. - R. J. Mathar, Feb 08 2021
Sum_{n>=0} (-1)^n/a(n) = 4*arcsinh(1/2)^2 = A202543^2. - Amiram Eldar, May 14 2022
MAPLE
seq((n+1)^2*(binomial(2*n+2, n+1))/2, n=0..29); # Zerinvary Lajos, May 31 2006
MATHEMATICA
Table[Binomial[2n+1, n](n+1)^2, {n, 0, 20}] (* Harvey P. Dale, Mar 23 2011 *)
PROG
(PARI) a(n)=binomial(2*n+1, n)*(n+1)^2
(PARI) x='x+O('x^99); Vec((1+2*x)/(1-4*x)^(5/2)) \\ Altug Alkan, Jul 09 2016
(Python)
from sympy import binomial
def a(n): return binomial(2*n + 1, n)*(n + 1)**2 # Indranil Ghosh, Apr 18 2017
CROSSREFS
Equals A002736/2.
A diagonal of A331430.
KEYWORD
nonn,easy,nice
STATUS
approved
Denominators of central difference coefficients M_{3}^(2n+1).
(Formerly M4588 N1957)
+10
10
1, 8, 1920, 193536, 154828800, 1167851520, 892705701888000, 1428329123020800, 768472460034048000, 4058540589291090739200, 196433364521688791777280000, 5957759187690780937420800000, 30447485794244997427545243648000000, 341011840895543971188506728857600000
OFFSET
1,2
COMMENTS
From Peter Bala, Oct 03 2019: (Start)
Denominators in the expansion of (2*sinh(x/2))^3 = x^3 + (1/8)*x^5 + (13/1920)*x^7 + (41/193536)*x^9 + ....
Let f(x) be a polynomial in x. The expansion of (2*sinh(x/2))^3 leads to a formula for the third central differences: f(x+3/2) - 3*f(x+1/2) + 3*f(x-1/2) - f(x-3/2) = (2*sinh(D/2))^3(f(x)) = D^3(f(x)) + (1/8)*D^5(f(x)) + (13/1920)* D^7(f(x)) + ..., where D denotes the differential operator d/dx. (End)
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
H. E. Salzer, Tables of coefficients for obtaining central differences from the derivatives, Journal of Mathematics and Physics (this journal is also called Studies in Applied Mathematics), 42 (1963), 162-165, plus several inserted tables.
E. W. Weisstein, Central Difference. From MathWorld--A Wolfram Web Resource.
FORMULA
a(n) = denominator(3! * m(3, 2 * n + 1) / (2 * n + 1)!) where m(k, k) = 1; m(k, q) = 0 for k = 0, k > q, or k + q odd; m(1, q) = 1/2^(q-1) for odd q; m(2, q) = 1 for even q; m(k, q+2) = m(k-2, q) + (k/2)^2 * m(k, q) otherwise. [From Salzer] - Sean A. Irvine, Dec 20 2016
CROSSREFS
Cf. A002673 (for numerators). Cf. A002671, A002674, A002675, A002676, A002677.
KEYWORD
nonn,frac
STATUS
approved
Numerators of coefficients for central differences M_{4}^(2*n).
(Formerly M5035 N2173)
+10
10
1, 1, 1, 17, 31, 1, 5461, 257, 73, 1271, 60787, 241, 22369621, 617093, 49981, 16843009, 5726623061, 7957, 91625968981, 61681, 231927781, 50991843607, 499069107643, 4043309297, 1100586419201, 5664905191661, 1672180312771
OFFSET
2,4
COMMENTS
From Peter Bala, Oct 03 2019: (Start)
Numerators in the expansion of (2*sinh(x/2))^4 = x^4 + (1/6)*x^6 + (1/80)*x^8 + (17/30240)*x^10 + ....
Let f(x) be a polynomial in x. The expansion of (2*sinh(x/2))^4 leads to a formula for the fourth central differences: f(x+2) - 4*f(x+1) + 6*f(x) - 4*f(x-1) + f(x-2) = (2*sinh(D/2))^4(f(x)) = D^4(f(x)) + (1/6)*D^6(f(x)) + (1/80)* D^8(f(x)) + (17/30240)*D^10(f(x)) + ..., where D denotes the differential operator d/dx. (End)
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
H. E. Salzer, Tables of coefficients for obtaining central differences from the derivatives, Journal of Mathematics and Physics (this journal is also called Studies in Applied Mathematics), 42 (1963), 162-165, plus several inserted tables.
E. W. Weisstein, Central Difference. From MathWorld--A Wolfram Web Resource.
MAPLE
gf := (sinh(2*sqrt(x)) - 2*sinh(sqrt(x)))*sqrt(x):
ser := series(gf, x, 40): seq(numer(coeff(ser, x, n)), n=2..28); # Peter Luschny, Oct 05 2019
CROSSREFS
Cf. A002676 and A002677 (two different choices for denominators).
Also equals A002430/A002431.
KEYWORD
nonn,frac
EXTENSIONS
More terms from Sean A. Irvine, Dec 20 2016
STATUS
approved
Denominators of coefficients for central differences M_{3}'^(2*n+1).
(Formerly M3676 N1499)
+10
10
1, 4, 40, 12096, 604800, 760320, 217945728000, 697426329600, 16937496576000, 30964207376793600, 187333454629601280000, 111407096483020800000, 1814811575069725360128000000, 10162944820390462016716800000
OFFSET
1,2
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
H. E. Salzer, Tables of coefficients for obtaining central differences from the derivatives, Journal of Mathematics and Physics (this journal is also called Studies in Applied Mathematics), 42 (1963), 162-165, plus several inserted tables.
FORMULA
From Peter Bala, Oct 03 2019: (Start)
a(n) are the denominators in the expansion of (1/2)*(d/dx)(2*sinh(sqrt(x)/2))^4 =
x + (1/4)*x^2 + (1/40)*x^3 + (17/12096)*x^4 + (31/604800)*x^5 + ...
The a(n) also appear as denominators in the difference formula: (1/2)*f(x+2) - f(x+1) + f(x-1) - (1/2)*f(x-2) = D^3(f(x)) + (1/4)*D^5(f(x)) + (1/40)*D^7(f(x)) + (17/12096)*D^9(f(x)) + ..., where D denotes the differential operator d/dx.
(End)
MAPLE
gf := (sinh(2*sqrt(x)) - 2*sinh(sqrt(x)))/sqrt(x): ser := series(gf, x, 20):
seq(denom(coeff(ser, x, n)), n=1..14); # Peter Luschny, Oct 05 2019
CROSSREFS
Numerators are A002675.
KEYWORD
nonn,frac
EXTENSIONS
More terms from Sean A. Irvine, Dec 20 2016
STATUS
approved
Numerators of central difference coefficients M_{3}^(2n+1).
(Formerly M4894 N2097)
+10
9
1, 1, 13, 41, 671, 73, 597871, 7913, 28009, 792451, 170549237, 19397633, 317733228541, 9860686403, 75397891, 170314355593, 2084647712458321, 29327731093, 168856464709124011, 3063310184201, 499338236699611, 535201577273701757, 23571643935246013553
OFFSET
1,3
COMMENTS
From Peter Bala, Oct 03 2019: (Start)
Numerators in the expansion of (2*sinh(x/2))^3 = x^3 + (1/8)*x^5 + (13/1920)*x^7 + (41/193536)*x^9 + ....
Let f(x) be a polynomial in x. The expansion of (2*sinh(x/2))^3 leads to a formula for the third central differences: f(x+3/2) - 3*f(x+1/2) + 3*f(x-1/2) - f(x-3/2) = (2*sinh(D/2))^3(f(x)) = D^3(f(x)) + (1/8)*D^5(f(x)) + (13/1920)* D^7(f(x)) + ..., where D denotes the differential operator d/dx. (End)
REFERENCES
N. J. A. Sloane, A Handbook of Integer Sequences, Academic Press, 1973 (includes this sequence).
N. J. A. Sloane and Simon Plouffe, The Encyclopedia of Integer Sequences, Academic Press, 1995 (includes this sequence).
LINKS
H. E. Salzer, Tables of coefficients for obtaining central differences from the derivatives, Journal of Mathematics and Physics (this journal is also called Studies in Applied Mathematics), 42 (1963), 162-165, plus several inserted tables.
E. W. Weisstein, Central Difference. From MathWorld--A Wolfram Web Resource.
KEYWORD
nonn,frac
STATUS
approved
T(n, k) = Sum_{j=0..k} (-1)^j*binomial(2*k, j)*(k - j)^(2*n), triangle read by rows, n >= 0 and 0 <= k <= n.
+10
8
1, 0, 1, 0, 1, 12, 0, 1, 60, 360, 0, 1, 252, 5040, 20160, 0, 1, 1020, 52920, 604800, 1814400, 0, 1, 4092, 506880, 12640320, 99792000, 239500800, 0, 1, 16380, 4684680, 230630400, 3632428800, 21794572800, 43589145600, 0, 1, 65532, 42653520, 3952428480
OFFSET
0,6
LINKS
José L. Cereceda, Sums of powers of integers and the sequence A304330, arXiv:2405.05268 [math.GM], 2024.
EXAMPLE
Triangle starts:
[0] 1;
[1] 0, 1;
[2] 0, 1, 12;
[3] 0, 1, 60, 360;
[4] 0, 1, 252, 5040, 20160;
[5] 0, 1, 1020, 52920, 604800, 1814400;
[6] 0, 1, 4092, 506880, 12640320, 99792000, 239500800;
[7] 0, 1, 16380, 4684680, 230630400, 3632428800, 21794572800, 43589145600;
MAPLE
T := (n, k) -> add((-1)^j*binomial(2*k, j)*(k-j)^(2*n), j=0..k):
for n from 0 to 8 do seq(T(n, k), k=0..n) od;
CROSSREFS
Row sums are A100872, T(n,2) = A058896, T(n,n) = A002674, T(n,n-1)= A091032.
KEYWORD
nonn,tabl
AUTHOR
Peter Luschny, May 11 2018
STATUS
approved

Search completed in 0.027 seconds