[go: up one dir, main page]

login
Search: a002476 -id:a002476
     Sort: relevance | references | number | modified | created      Format: long | short | data
Side of primitive equilateral triangle with prime cevian p=A002476(n) cutting an edge into two integral parts.
+20
9
8, 15, 21, 35, 40, 48, 65, 77, 80, 91, 112, 117, 119, 133, 160, 168, 171, 187, 207, 209, 221, 224, 253, 255, 264, 280, 312, 323, 325, 341, 352, 377, 391, 403, 408, 425, 435, 440, 455, 465, 483, 504, 525, 527, 560, 576, 595, 609, 624, 645, 651, 665, 667, 703
OFFSET
1,1
COMMENTS
The edge a(n) is partitioned into q=s^2 - t^2=A088243(n)*A088296(n) and r=t(2s+t)=A088242(n)*A088299(n) by a cevian of length p. [Alternatively, (p,q,r) form a triangle with angle 2pi/3 opposite side p.] The quadruple {p,q,r,a(n)=q+r} satisfies the triangle relation: see A061281, or the simpler relation a(n)^2 = p^2 + q*r.
LINKS
FORMULA
a(n) = A088241(n)*A088298(n) = s(s+2t), where s^2 + st + t^2, with s>t, form the primes p = 1 (mod 6) = A002476(n).
MATHEMATICA
sol[p_] := Solve[0 < t < s && s^2 + s t + t^2 == p, {s, t}, Integers];
Union[Reap[For[n = 1, n <= 10000, n++, If[PrimeQ[p = 6n + 1], an = s(s + 2t) /. sol[p][[1]]]; Sow[an]]][[2, 1]]] (* Jean-François Alcover, Mar 06 2020 *)
KEYWORD
nonn
AUTHOR
Lekraj Beedassy, Oct 31 2003
EXTENSIONS
More terms from Ray Chandler, Nov 01 2003
STATUS
approved
Values of y, where x^2 + xy + y^2=p (x<y) is a prime of the form 6n + 1 (=A002476).
+20
6
2, 3, 3, 5, 4, 6, 5, 7, 8, 7, 8, 9, 7, 7, 10, 9, 12, 11, 11, 9, 13, 14, 11, 12, 15, 10, 12, 13, 17, 16, 11, 13, 17, 13, 17, 15, 12, 15, 20, 13, 18, 17, 21, 21, 18, 17, 21, 14, 21, 19, 24, 23, 19, 22, 15, 18, 20, 21, 19, 25, 18, 19, 23, 21, 27, 17, 27, 25, 19, 20, 27, 23, 28, 21, 26
OFFSET
1,1
MATHEMATICA
Reap[For[n = 1, n <= 200, n++, If[PrimeQ[p = 6 n + 1], s = Solve[x^2 + x y + y^2 == p && 0 < x < y, {x, y}, Integers]; Sow[y /. s[[1]]]]]][[2, 1]] (* Jean-François Alcover, Mar 07 2020 *)
KEYWORD
nonn
AUTHOR
Lekraj Beedassy, Nov 03 2003
EXTENSIONS
More terms from Ray Chandler, Nov 04 2003
STATUS
approved
Values of x, where x^2 + xy + y^2=p (x<y) is a prime of the form 6n + 1 (=A002476).
+20
6
1, 1, 2, 1, 3, 1, 4, 2, 1, 3, 3, 2, 5, 6, 3, 5, 1, 3, 4, 7, 2, 1, 6, 5, 1, 9, 7, 6, 1, 3, 10, 8, 3, 9, 4, 7, 11, 8, 1, 11, 5, 7, 1, 2, 7, 9, 4, 13, 5, 8, 1, 3, 9, 5, 14, 11, 9, 8, 11, 3, 13, 12, 7, 10, 1, 15, 2, 6, 14, 13, 4, 10, 3, 13, 7, 17, 3, 7, 9, 13, 8, 11, 16, 15, 6, 3, 12, 17, 7, 9, 1, 3, 16
OFFSET
1,3
MATHEMATICA
Reap[For[n = 1, n <= 200, n++, If[PrimeQ[p = 6 n + 1], s = Solve[x^2 + x y + y^2 == p && 0 < x < y, {x, y}, Integers]; Sow[x /. s[[1]]]]]][[2, 1]] (* Jean-François Alcover, Mar 07 2020 *)
KEYWORD
nonn
AUTHOR
Lekraj Beedassy, Nov 03 2003
EXTENSIONS
More terms from Ray Chandler, Nov 04 2003
STATUS
approved
Values of x + y, where x^2 + xy + y^2=p (x<y) is a prime of the form 6n + 1 (=A002476).
+20
6
3, 4, 5, 6, 7, 7, 9, 9, 9, 10, 11, 11, 12, 13, 13, 14, 13, 14, 15, 16, 15, 15, 17, 17, 16, 19, 19, 19, 18, 19, 21, 21, 20, 22, 21, 22, 23, 23, 21, 24, 23, 24, 22, 23, 25, 26, 25, 27, 26, 27, 25, 26, 28, 27, 29, 29, 29, 29, 30, 28, 31, 31, 30, 31, 28, 32, 29, 31, 33, 33, 31, 33
OFFSET
1,1
MATHEMATICA
Reap[For[n = 1, n <= 200, n++, If[PrimeQ[p = 6 n + 1], s = Solve[x^2 + x y + y^2 == p && 0 < x < y, {x, y}, Integers]; Sow[x + y /. s[[1]]]]]][[2, 1]] (* Jean-François Alcover, Mar 07 2020 *)
KEYWORD
nonn
AUTHOR
Lekraj Beedassy, Nov 03 2003
EXTENSIONS
More terms from Ray Chandler, Nov 04 2003
STATUS
approved
Values of y - x, where x^2 + xy + y^2=p (x<y) is a prime of the form 6n + 1 (=A002476).
+20
6
1, 2, 1, 4, 1, 5, 1, 5, 7, 4, 5, 7, 2, 1, 7, 4, 11, 8, 7, 2, 11, 13, 5, 7, 14, 1, 5, 7, 16, 13, 1, 5, 14, 4, 13, 8, 1, 7, 19, 2, 13, 10, 20, 19, 11, 8, 17, 1, 16, 11, 23, 20, 10, 17, 1, 7, 11, 13, 8, 22, 5, 7, 16, 11, 26, 2, 25, 19, 5, 7, 23, 13, 25, 8, 19, 1, 26, 20, 17, 10, 19, 14, 5, 7, 23
OFFSET
1,2
MATHEMATICA
Reap[For[n = 1, n <= 200, n++, If[PrimeQ[p = 6 n + 1], s = Solve[x^2 + x y + y^2 == p && 0 < x < y, {x, y}, Integers];
Sow[y - x /. s[[1]]]]]][[2, 1]] (* Jean-François Alcover, Mar 09 2020 *)
KEYWORD
nonn
AUTHOR
Lekraj Beedassy, Nov 03 2003
EXTENSIONS
More terms from Ray Chandler, Nov 04 2003
STATUS
approved
Values of 2x + y, where x^2 + xy + y^2=p (x<y) is a prime of the form 6n + 1 (=A002476).
+20
6
4, 5, 7, 7, 10, 8, 13, 11, 10, 13, 14, 13, 17, 19, 16, 19, 14, 17, 19, 23, 17, 16, 23, 22, 17, 28, 26, 25, 19, 22, 31, 29, 23, 31, 25, 29, 34, 31, 22, 35, 28, 31, 23, 25, 32, 35, 29, 40, 31, 35, 26, 29, 37, 32, 43, 40, 38, 37, 41, 31, 44, 43, 37, 41, 29, 47, 31, 37, 47, 46, 35
OFFSET
1,1
MATHEMATICA
Reap[For[n = 1, n <= 200, n++, If[PrimeQ[p = 6 n + 1], s = Solve[x^2 + x y + y^2 == p && 0 < x < y, {x, y}, Integers];
Sow[2x + y /. s[[1]]]]]][[2, 1]] (* Jean-François Alcover, Mar 09 2020 *)
KEYWORD
nonn
AUTHOR
Lekraj Beedassy, Nov 03 2003
EXTENSIONS
More terms from Ray Chandler, Nov 04 2003
STATUS
approved
Values of x + 2y, where x^2 + xy + y^2=p (x<y) is a prime of the form 6n + 1 (=A002476).
+20
6
5, 7, 8, 11, 11, 13, 14, 16, 17, 17, 19, 20, 19, 20, 23, 23, 25, 25, 26, 25, 28, 29, 28, 29, 31, 29, 31, 32, 35, 35, 32, 34, 37, 35, 38, 37, 35, 38, 41, 37, 41, 41, 43, 44, 43, 43, 46, 41, 47, 46, 49, 49, 47, 49, 44, 47, 49, 50, 49, 53, 49, 50, 53, 52, 55, 49, 56, 56, 52, 53
OFFSET
1,1
MATHEMATICA
Reap[For[n = 1, n <= 200, n++, If[PrimeQ[p = 6 n + 1], s = Solve[x^2 + x y + y^2 == p && 0 < x < y, {x, y}, Integers];
Sow[x + 2y /. s[[1]]]]]][[2, 1]] (* Jean-François Alcover, Mar 09 2020 *)
KEYWORD
nonn
AUTHOR
Lekraj Beedassy, Nov 03 2003
EXTENSIONS
More terms from Ray Chandler, Nov 04 2003
STATUS
approved
Semiprimes p*q where both p and q are primes of the form 6n+1 (A002476).
+20
6
49, 91, 133, 169, 217, 247, 259, 301, 361, 403, 427, 469, 481, 511, 553, 559, 589, 679, 703, 721, 763, 793, 817, 871, 889, 949, 961, 973, 1027, 1057, 1099, 1141, 1147, 1159, 1261, 1267, 1273, 1333, 1339, 1351, 1369, 1387, 1393, 1417, 1477, 1501, 1561, 1591
OFFSET
1,1
COMMENTS
These are the products of terms from A107890 excluding multiples of 3.
Every semiprime not divisible by 2 or 3 must be in one of these three disjoint sets:
A108164 = the product of two primes of the form 6n+1 (A002476),
A108166 = the product of two primes of the form 6n-1 (A007528),
A108172 = the product of a prime of the form 6n+1 and a prime of the form 6n-1.
The product of two primes of the form 6n+1 is a semiprime of the form 6n+1.
REFERENCES
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards Applied Math. Series 55, 1964 (and various reprintings), p. 870.
LINKS
M. Abramowitz and I. A. Stegun, eds., Handbook of Mathematical Functions, National Bureau of Standards, Applied Math. Series 55, Tenth Printing, 1972 [alternative scanned copy].
K. G. Reuschle, Tafeln complexer Primzahlen, Königl. Akademie der Wissenschaften, Berlin, 1875, p. 1.
FORMULA
{a(n)} = {p*q where both p and q are in A002476}.
MAPLE
N:= 2000: # To get all terms <= N
P:= select(isprime, [seq(i, i=7..N/7, 6)]):
sort(select(`<=`, [seq(seq(P[i]*P[j], j=1..i), i=1..nops(P))], N)); # Robert Israel, Dec 27 2018
MATHEMATICA
With[{nn=50}, Take[Times@@@Tuples[Select[6*Range[nn]+1, PrimeQ], 2]// Union, nn]] (* Harvey P. Dale, May 20 2021 *)
CROSSREFS
KEYWORD
easy,nonn
AUTHOR
Jonathan Vos Post, Jun 13 2005
EXTENSIONS
Edited and extended by Ray Chandler, Oct 15 2005
STATUS
approved
Decimal expansion of Product_{k>=1} (1 + 1/A002476(k)^3).
+20
6
1, 0, 0, 3, 6, 0, 2, 5, 4, 0, 2, 2, 1, 2, 5, 9, 8, 9, 6, 7, 0, 4, 3, 2, 3, 9, 3, 3, 3, 3, 2, 1, 8, 7, 8, 5, 9, 1, 7, 0, 5, 3, 9, 4, 7, 7, 1, 1, 7, 5, 0, 8, 7, 2, 1, 3, 7, 0, 2, 2, 4, 0, 2, 6, 4, 1, 6, 5, 2, 3, 7, 1, 7, 3, 7, 1, 7, 3, 6, 2, 6, 1, 4, 6, 6, 2, 7, 5, 2, 0, 4, 0, 8, 1, 5, 1, 4, 8, 2, 9, 8, 9, 1, 5, 7
OFFSET
1,4
COMMENTS
In general, for s > 0, Product_{k>=1} (1 + 1/A002476(k)^(2*s+1)) / (1 - 1/A002476(k)^(2*s+1)) = sqrt(3) * (2*Pi)^(2*s + 1) * zeta(2*s + 1) * A002114(s) / ((2^(2*s + 1) + 1) * (3^(2*s + 1) + 1) * (2*s)! * zeta(4*s + 2)).
For s > 1, Product_{k>=1} (1 + 1/A002476(k)^s) / (1 - 1/A002476(k)^s) = (zeta(s, 1/6) - zeta(s, 5/6))*zeta(s) / ((2^s + 1)*(3^s + 1)*zeta(2*s)).
For s > 1, Product_{k>=1} (1 + 1/A002476(k)^s) * (1 + 1/A007528(k)^s) = 6^s * zeta(s) / ((2^s + 1) * (3^s + 1) * zeta(2*s)).
For s > 0, Product_{k>=1} ((A007528(k)^(2*s+1) - 1) / (A007528(k)^(2*s+1) + 1)) * ((A002476(k)^(2*s+1) + 1) / (A002476(k)^(2*s+1) - 1)) = 6 * A002114(s)^2 * (4*s + 2)! / ((2^(4*s + 2) - 1) * (3^(4*s + 2) - 1) * Bernoulli(4*s + 2) * (2*s)!^2) = Bernoulli(2*s)^2 * (4*s + 2)! * (zeta(2*s + 1, 1/6) - zeta(2*s + 1, 5/6))^2 / (8*Pi^2 * (2^(4*s + 2) - 1) * (3^(4*s + 2) - 1) * Bernoulli(4*s + 2) * (2*s)!^2 * zeta(2*s)^2).
FORMULA
A334477 / A334478 = 15*sqrt(3)*zeta(3)/Pi^3.
A334477 * A334479 = 810*zeta(3)/Pi^6.
EXAMPLE
1.0036025402212598967043239333321878591705394771...
KEYWORD
nonn,cons
AUTHOR
Vaclav Kotesovec, May 02 2020
EXTENSIONS
More digits from Vaclav Kotesovec, Jun 27 2020
STATUS
approved
Decimal expansion of Product_{k>=1} (1 - 1/A002476(k)^3).
+20
6
9, 9, 6, 4, 0, 1, 6, 9, 2, 8, 1, 6, 0, 3, 6, 6, 3, 2, 2, 6, 2, 3, 6, 1, 1, 2, 2, 3, 8, 4, 7, 1, 8, 7, 9, 9, 9, 6, 5, 5, 7, 3, 8, 1, 8, 7, 1, 4, 0, 5, 3, 1, 5, 3, 7, 8, 6, 9, 8, 8, 9, 7, 4, 9, 3, 0, 1, 5, 9, 1, 3, 3, 2, 5, 3, 4, 3, 0, 6, 8, 4, 2, 5, 6, 2, 1, 9, 1, 9, 7, 2, 9, 9, 7, 7, 5, 2, 3, 2, 2, 1, 2, 3, 0, 1, 9
OFFSET
0,1
COMMENTS
In general, for s > 0, Product_{k>=1} (1 + 1/A002476(k)^(2*s+1)) / (1 - 1/A002476(k)^(2*s+1)) = sqrt(3) * (2*Pi)^(2*s + 1) * zeta(2*s + 1) * A002114(s) / ((2^(2*s + 1) + 1) * (3^(2*s + 1) + 1) * (2*s)! * zeta(4*s + 2)).
For s > 1, Product_{k>=1} (1 + 1/A002476(k)^s) / (1 - 1/A002476(k)^s) = (zeta(s, 1/6) - zeta(s, 5/6))*zeta(s) / ((2^s + 1)*(3^s + 1)*zeta(2*s)).
For s > 1, Product_{k>=1} (1 - 1/A002476(k)^s) * (1 - 1/A007528(k)^s) = 6^s / ((2^s - 1)*(3^s - 1)*zeta(s)).
LINKS
R. J. Mathar, Table of Dirichlet L-series and Prime Zeta Modulo Functions for Small Moduli, arXiv:1008.2547 [math.NT], 2010-2015, p. 26 (case 3 1 3 = 1/A334478).
FORMULA
A334477 / A334478 = 15*sqrt(3)*zeta(3)/Pi^3.
A334478 * A334480 = 108/(91*zeta(3)).
EXAMPLE
0.996401692816036632262361122384718799965573818714...
CROSSREFS
KEYWORD
nonn,cons
AUTHOR
Vaclav Kotesovec, May 02 2020
EXTENSIONS
More digits from Vaclav Kotesovec, Jun 27 2020
STATUS
approved

Search completed in 0.165 seconds