[go: up one dir, main page]

login
Revision History for A334477 (Bold, blue-underlined text is an addition; faded, red-underlined text is a deletion.)

Showing entries 1-10 | older changes
Decimal expansion of Product_{k>=1} (1 + 1/A002476(k)^3).
(history; published version)
#21 by Vaclav Kotesovec at Sat Jun 27 16:02:20 EDT 2020
STATUS

editing

approved

#20 by Vaclav Kotesovec at Sat Jun 27 16:02:16 EDT 2020
EXTENSIONS

More digits from Vaclav Kotesovec, Jun 27 2020

#19 by Vaclav Kotesovec at Sat Jun 27 15:58:07 EDT 2020
DATA

1, 0, 0, 3, 6, 0, 2, 5, 4, 0, 2, 2, 1, 2, 5, 9, 8, 9, 6, 7, 0, 4, 3, 2, 3, 9, 3, 3, 3, 3, 2, 1, 8, 7, 8, 5, 9, 1, 7, 0, 5, 3, 9, 4, 7, 7, 1, 1, 7, 5, 0, 8, 7, 2, 1, 3, 7, 0, 2, 2, 4, 0, 2, 6, 4, 1, 6, 5, 2, 3, 7, 1, 7, 3, 7, 1, 7, 3, 6, 2, 6, 1, 4, 6, 6, 2, 7, 5, 2, 0, 4, 0, 8, 1, 5, 1, 4, 8, 2, 9, 8, 9, 1, 5, 7

KEYWORD

nonn,cons,more

STATUS

approved

editing

#18 by Vaclav Kotesovec at Tue May 05 18:03:14 EDT 2020
STATUS

editing

approved

#17 by Vaclav Kotesovec at Tue May 05 18:02:53 EDT 2020
COMMENTS

For s > 0, Product_{k>=1} ((A007528(k)^(2*s+1) - 1) / (A007528(k)^(2*s+1) + 1)) * ((A002476(k)^(2*s+1) + 1) / (A002476(k)^(2*s+1) - 1)) = 6 * A002114(s)^2 * (4*s + 2)! / ((2^(4*s + 2) - 1) * (3^(4*s + 2) - 1) * Bernoulli(4*s + 2) * (2*s)!^2) = Bernoulli(2*s)^2 * (4*s + 2)! * (zeta(2*s + 1, 1/6) - zeta(2*s + 1, 5/6))^2 / (8*Pi^2 * (2^(4*s + 2) - 1) * (3^(4*s + 2) - 1) * Bernoulli(4*s + 2) * (2*s)!^2 * zeta(2*s)^2).

STATUS

approved

editing

#16 by Vaclav Kotesovec at Tue May 05 17:18:43 EDT 2020
STATUS

editing

approved

#15 by Vaclav Kotesovec at Tue May 05 17:18:34 EDT 2020
COMMENTS

In general, for For s > 1, Product_{k>=1} (1 + 1/A002476(k)^s) / (1 - 1/A002476(k)^s) = (zeta(s, 1/6) - zeta(s, 5/6))*zeta(s) / ((2^s + 1)*(3^s + 1)*zeta(2*s)).

In general, for For s > 1, Product_{k>=1} (1 + 1/A002476(k)^s) * (1 + 1/A007528(k)^s) = 6^s * zeta(s) / ((2^s + 1) * (3^s + 1) * zeta(2*s)).

In general, for For s > 0, Product_{k>=1} ((A007528(k)^(2*s+1) - 1) / (A007528(k)^(2*s+1) + 1)) * ((A002476(k)^(2*s+1) + 1) / (A002476(k)^(2*s+1) - 1)) = 6 * A002114(s)^2 * (4*s + 2)! / ((2^(4*s + 2) - 1) * (3^(4*s + 2) - 1) * Bernoulli(4*s + 2) * (2*s)!^2).

#14 by Vaclav Kotesovec at Tue May 05 17:18:09 EDT 2020
COMMENTS

In general, for s > 1, Product_{k>=1} (1 + 1/A002476(k)^s) / (1 - 1/A002476(k)^s) = (zeta(s, 1/6) - zeta(s, 5/6))*zeta(s) / ((2^s + 1)*(3^s + 1)*zeta(2*s)).

STATUS

approved

editing

#13 by Vaclav Kotesovec at Mon May 04 02:59:01 EDT 2020
STATUS

editing

approved

#12 by Vaclav Kotesovec at Mon May 04 02:54:05 EDT 2020
COMMENTS

In general, for s > 0, Product_{k>=1} ((A007528(k)^(2*s+1) - 1) / (A007528(k)^(2*s+1) + 1)) * ((A002476(k)^(2*s+1) + 1) / (A002476(k)^(2*s+1) - 1)) = 6 * A002114(s)^2 * (4*s + 2)! / ((2^(4*s + 2) - 1) * (3^(4*s + 2) - 1) * Bernoulli(4*s + 2) * (2*s)!^2).

STATUS

approved

editing